ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres GIF version

Theorem fsnunres 5786
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5385 . . . 4 (𝐹 Fn 𝑆 → (𝐹𝑆) = 𝐹)
21adantr 276 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → (𝐹𝑆) = 𝐹)
3 ressnop0 5765 . . . 4 𝑋𝑆 → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
43adantl 277 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
52, 4uneq12d 3328 . 2 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) = (𝐹 ∪ ∅))
6 resundir 4973 . 2 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆))
7 un0 3494 . . 3 (𝐹 ∪ ∅) = 𝐹
87eqcomi 2209 . 2 𝐹 = (𝐹 ∪ ∅)
95, 6, 83eqtr4g 2263 1 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2176  cun 3164  c0 3460  {csn 3633  cop 3636  cres 4677   Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-dm 4685  df-res 4687  df-fun 5273  df-fn 5274
This theorem is referenced by:  tfrlemisucaccv  6411  tfr1onlemsucaccv  6427  tfrcllemsucaccv  6440
  Copyright terms: Public domain W3C validator