![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsnunres | GIF version |
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunres | ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 5363 | . . . 4 ⊢ (𝐹 Fn 𝑆 → (𝐹 ↾ 𝑆) = 𝐹) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑆) = 𝐹) |
3 | ressnop0 5739 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑆 → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) | |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) |
5 | 2, 4 | uneq12d 3314 | . 2 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) = (𝐹 ∪ ∅)) |
6 | resundir 4956 | . 2 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) | |
7 | un0 3480 | . . 3 ⊢ (𝐹 ∪ ∅) = 𝐹 | |
8 | 7 | eqcomi 2197 | . 2 ⊢ 𝐹 = (𝐹 ∪ ∅) |
9 | 5, 6, 8 | 3eqtr4g 2251 | 1 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ∅c0 3446 {csn 3618 〈cop 3621 ↾ cres 4661 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-dm 4669 df-res 4671 df-fun 5256 df-fn 5257 |
This theorem is referenced by: tfrlemisucaccv 6378 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 |
Copyright terms: Public domain | W3C validator |