Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsnunres | GIF version |
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunres | ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 5297 | . . . 4 ⊢ (𝐹 Fn 𝑆 → (𝐹 ↾ 𝑆) = 𝐹) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑆) = 𝐹) |
3 | ressnop0 5666 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑆 → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) | |
4 | 3 | adantl 275 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) |
5 | 2, 4 | uneq12d 3277 | . 2 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) = (𝐹 ∪ ∅)) |
6 | resundir 4898 | . 2 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) | |
7 | un0 3442 | . . 3 ⊢ (𝐹 ∪ ∅) = 𝐹 | |
8 | 7 | eqcomi 2169 | . 2 ⊢ 𝐹 = (𝐹 ∪ ∅) |
9 | 5, 6, 8 | 3eqtr4g 2224 | 1 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 ∅c0 3409 {csn 3576 〈cop 3579 ↾ cres 4606 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 df-res 4616 df-fun 5190 df-fn 5191 |
This theorem is referenced by: tfrlemisucaccv 6293 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 |
Copyright terms: Public domain | W3C validator |