ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres GIF version

Theorem fsnunres 5764
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5367 . . . 4 (𝐹 Fn 𝑆 → (𝐹𝑆) = 𝐹)
21adantr 276 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → (𝐹𝑆) = 𝐹)
3 ressnop0 5743 . . . 4 𝑋𝑆 → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
43adantl 277 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
52, 4uneq12d 3318 . 2 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) = (𝐹 ∪ ∅))
6 resundir 4960 . 2 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆))
7 un0 3484 . . 3 (𝐹 ∪ ∅) = 𝐹
87eqcomi 2200 . 2 𝐹 = (𝐹 ∪ ∅)
95, 6, 83eqtr4g 2254 1 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  cun 3155  c0 3450  {csn 3622  cop 3625  cres 4665   Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-res 4675  df-fun 5260  df-fn 5261
This theorem is referenced by:  tfrlemisucaccv  6383  tfr1onlemsucaccv  6399  tfrcllemsucaccv  6412
  Copyright terms: Public domain W3C validator