ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres GIF version

Theorem fsnunres 5761
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5364 . . . 4 (𝐹 Fn 𝑆 → (𝐹𝑆) = 𝐹)
21adantr 276 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → (𝐹𝑆) = 𝐹)
3 ressnop0 5740 . . . 4 𝑋𝑆 → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
43adantl 277 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
52, 4uneq12d 3315 . 2 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) = (𝐹 ∪ ∅))
6 resundir 4957 . 2 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆))
7 un0 3481 . . 3 (𝐹 ∪ ∅) = 𝐹
87eqcomi 2197 . 2 𝐹 = (𝐹 ∪ ∅)
95, 6, 83eqtr4g 2251 1 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  cun 3152  c0 3447  {csn 3619  cop 3622  cres 4662   Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-dm 4670  df-res 4672  df-fun 5257  df-fn 5258
This theorem is referenced by:  tfrlemisucaccv  6380  tfr1onlemsucaccv  6396  tfrcllemsucaccv  6409
  Copyright terms: Public domain W3C validator