| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsnunres | GIF version | ||
| Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| fsnunres | ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 5367 | . . . 4 ⊢ (𝐹 Fn 𝑆 → (𝐹 ↾ 𝑆) = 𝐹) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑆) = 𝐹) |
| 3 | ressnop0 5743 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑆 → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) |
| 5 | 2, 4 | uneq12d 3318 | . 2 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) = (𝐹 ∪ ∅)) |
| 6 | resundir 4960 | . 2 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) | |
| 7 | un0 3484 | . . 3 ⊢ (𝐹 ∪ ∅) = 𝐹 | |
| 8 | 7 | eqcomi 2200 | . 2 ⊢ 𝐹 = (𝐹 ∪ ∅) |
| 9 | 5, 6, 8 | 3eqtr4g 2254 | 1 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ∅c0 3450 {csn 3622 〈cop 3625 ↾ cres 4665 Fn wfn 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 df-res 4675 df-fun 5260 df-fn 5261 |
| This theorem is referenced by: tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 |
| Copyright terms: Public domain | W3C validator |