![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riota2 | GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1466 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 5629 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ∃!wreu 2361 ℩crio 5607 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-reu 2366 df-v 2621 df-sbc 2841 df-un 3003 df-sn 3452 df-pr 3453 df-uni 3654 df-iota 4980 df-riota 5608 |
This theorem is referenced by: eqsupti 6691 prsrriota 7333 recriota 7425 axcaucvglemval 7432 subadd 7685 divmulap 8142 flqlelt 9683 flqbi 9697 remim 10294 resqrtcl 10462 rersqrtthlem 10463 divalgmod 11205 dfgcd3 11277 bezout 11278 oddpwdclemxy 11425 qnumdenbi 11448 |
Copyright terms: Public domain | W3C validator |