ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplinv GIF version

Theorem grplinv 13569
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grplinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )

Proof of Theorem grplinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . 5 + = (+g𝐺)
3 grpinv.u . . . . 5 0 = (0g𝐺)
4 grpinv.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 13562 . . . 4 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
65adantl 277 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
71, 2, 3grpinveu 13557 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
8 riotacl2 5962 . . . 4 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
97, 8syl 14 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
106, 9eqeltrd 2306 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
11 oveq1 6001 . . . . 5 (𝑦 = (𝑁𝑋) → (𝑦 + 𝑋) = ((𝑁𝑋) + 𝑋))
1211eqeq1d 2238 . . . 4 (𝑦 = (𝑁𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁𝑋) + 𝑋) = 0 ))
1312elrab 2959 . . 3 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ((𝑁𝑋) + 𝑋) = 0 ))
1413simprbi 275 . 2 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁𝑋) + 𝑋) = 0 )
1510, 14syl 14 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  ∃!wreu 2510  {crab 2512  cfv 5314  crio 5946  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  0gc0g 13275  Grpcgrp 13519  invgcminusg 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523
This theorem is referenced by:  grprinv  13570  grpinvid1  13571  grpinvid2  13572  isgrpinv  13573  grplinvd  13574  grplrinv  13576  grpressid  13580  grplcan  13581  grpasscan2  13583  grpinvinv  13586  grpinvssd  13596  grpsubadd  13607  grplactcnv  13621  imasgrp  13634  ghmgrp  13641  mulgdirlem  13676  issubg2m  13712  isnsg3  13730  nmzsubg  13733  ssnmz  13734  eqger  13747  qusgrp  13755  conjghm  13799  ringnegr  14001  unitlinv  14075  lmodvneg1  14279  psrlinv  14633
  Copyright terms: Public domain W3C validator