| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplinv | GIF version | ||
| Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinv.p | ⊢ + = (+g‘𝐺) |
| grpinv.u | ⊢ 0 = (0g‘𝐺) |
| grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grplinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpinv.u | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | grpinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpinvval 13425 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 7 | 1, 2, 3 | grpinveu 13420 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 8 | riotacl2 5923 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
| 10 | 6, 9 | eqeltrd 2283 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
| 11 | oveq1 5961 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑋) → (𝑦 + 𝑋) = ((𝑁‘𝑋) + 𝑋)) | |
| 12 | 11 | eqeq1d 2215 | . . . 4 ⊢ (𝑦 = (𝑁‘𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁‘𝑋) + 𝑋) = 0 )) |
| 13 | 12 | elrab 2931 | . . 3 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ((𝑁‘𝑋) + 𝑋) = 0 )) |
| 14 | 13 | simprbi 275 | . 2 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 15 | 10, 14 | syl 14 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃!wreu 2487 {crab 2489 ‘cfv 5277 ℩crio 5908 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 0gc0g 13138 Grpcgrp 13382 invgcminusg 13383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 |
| This theorem is referenced by: grprinv 13433 grpinvid1 13434 grpinvid2 13435 isgrpinv 13436 grplinvd 13437 grplrinv 13439 grpressid 13443 grplcan 13444 grpasscan2 13446 grpinvinv 13449 grpinvssd 13459 grpsubadd 13470 grplactcnv 13484 imasgrp 13497 ghmgrp 13504 mulgdirlem 13539 issubg2m 13575 isnsg3 13593 nmzsubg 13596 ssnmz 13597 eqger 13610 qusgrp 13618 conjghm 13662 ringnegr 13864 unitlinv 13938 lmodvneg1 14142 psrlinv 14496 |
| Copyright terms: Public domain | W3C validator |