Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . 5
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) |
2 | 1 | a1i 9 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦)) |
3 | 2 | ss2rabi 3224 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ⊆ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} |
4 | | supmoti.ti |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
5 | | supclti.2 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
6 | 4, 5 | supval2ti 6960 |
. . . 4
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
7 | 4, 5 | supeuti 6959 |
. . . . 5
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
8 | | riotacl2 5811 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
9 | 7, 8 | syl 14 |
. . . 4
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
10 | 6, 9 | eqeltrd 2243 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
11 | 3, 10 | sselid 3140 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦}) |
12 | | breq2 3986 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑤)) |
13 | 12 | notbid 657 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤)) |
14 | 13 | cbvralv 2692 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑥𝑅𝑤) |
15 | | breq1 3985 |
. . . . . . 7
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
16 | 15 | notbid 657 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
17 | 16 | ralbidv 2466 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤 ∈ 𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
18 | 14, 17 | syl5bb 191 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
19 | 18 | elrab 2882 |
. . 3
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
20 | 19 | simprbi 273 |
. 2
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤) |
21 | | breq2 3986 |
. . . 4
⊢ (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
22 | 21 | notbid 657 |
. . 3
⊢ (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
23 | 22 | rspccv 2827 |
. 2
⊢
(∀𝑤 ∈
𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
24 | 11, 20, 23 | 3syl 17 |
1
⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |