| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . 5
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) |
| 2 | 1 | a1i 9 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦)) |
| 3 | 2 | ss2rabi 3265 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ⊆ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} |
| 4 | | supmoti.ti |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| 5 | | supclti.2 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 6 | 4, 5 | supval2ti 7061 |
. . . 4
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
| 7 | 4, 5 | supeuti 7060 |
. . . . 5
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 8 | | riotacl2 5891 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 9 | 7, 8 | syl 14 |
. . . 4
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 10 | 6, 9 | eqeltrd 2273 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 11 | 3, 10 | sselid 3181 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦}) |
| 12 | | breq2 4037 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑤)) |
| 13 | 12 | notbid 668 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤)) |
| 14 | 13 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑥𝑅𝑤) |
| 15 | | breq1 4036 |
. . . . . . 7
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
| 16 | 15 | notbid 668 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
| 17 | 16 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤 ∈ 𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
| 18 | 14, 17 | bitrid 192 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
| 19 | 18 | elrab 2920 |
. . 3
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
| 20 | 19 | simprbi 275 |
. 2
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤) |
| 21 | | breq2 4037 |
. . . 4
⊢ (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| 22 | 21 | notbid 668 |
. . 3
⊢ (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| 23 | 22 | rspccv 2865 |
. 2
⊢
(∀𝑤 ∈
𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
| 24 | 11, 20, 23 | 3syl 17 |
1
⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |