ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supubti GIF version

Theorem supubti 7154
Description: A supremum is an upper bound. See also supclti 7153 and suplubti 7155.

This proof demonstrates how to expand an iota-based definition (df-iota 5274) using riotacl2 5962.

(Contributed by Jim Kingdon, 24-Nov-2021.)

Hypotheses
Ref Expression
supmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supclti.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supubti (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑦,𝐴,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥   𝑦,𝑅,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑣,𝑢)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem supubti
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
21a1i 9 . . . 4 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦))
32ss2rabi 3306 . . 3 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦}
4 supmoti.ti . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
5 supclti.2 . . . . 5 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
64, 5supval2ti 7150 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
74, 5supeuti 7149 . . . . 5 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
8 riotacl2 5962 . . . . 5 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
97, 8syl 14 . . . 4 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
106, 9eqeltrd 2306 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
113, 10sselid 3222 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦})
12 breq2 4086 . . . . . . 7 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
1312notbid 671 . . . . . 6 (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤))
1413cbvralv 2765 . . . . 5 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ 𝑥𝑅𝑤)
15 breq1 4085 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1615notbid 671 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1716ralbidv 2530 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1814, 17bitrid 192 . . . 4 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1918elrab 2959 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2019simprbi 275 . 2 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
21 breq2 4086 . . . 4 (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2221notbid 671 . . 3 (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2322rspccv 2904 . 2 (∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2411, 20, 233syl 17 1 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  {crab 2512   class class class wbr 4082  crio 5946  supcsup 7137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-riota 5947  df-sup 7139
This theorem is referenced by:  suplub2ti  7156  supisoti  7165  inflbti  7179  suprubex  9086  zsupcl  10438  dvdslegcd  12471
  Copyright terms: Public domain W3C validator