![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotacl | GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3265 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 5888 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3178 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃!wreu 2474 {crab 2476 ℩crio 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-uni 3837 df-iota 5216 df-riota 5874 |
This theorem is referenced by: riotaprop 5898 riotass2 5901 riotass 5902 acexmidlemcase 5914 supclti 7059 caucvgsrlemcl 7851 caucvgsrlemgt1 7857 axcaucvglemcl 7957 subval 8213 subcl 8220 divvalap 8695 divclap 8699 lbcl 8967 divfnzn 9689 flqcl 10345 flapcl 10347 cjval 10992 cjth 10993 cjf 10994 oddpwdclemodd 12313 oddpwdclemdc 12314 oddpwdc 12315 qnumdencl 12328 qnumdenbi 12333 ismgmid 12963 grpinvf 13122 |
Copyright terms: Public domain | W3C validator |