ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5913
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3277 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5912 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3190 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  ∃!wreu 2485  {crab 2487  crio 5897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-uni 3850  df-iota 5231  df-riota 5898
This theorem is referenced by:  riotaprop  5922  riotass2  5925  riotass  5926  acexmidlemcase  5938  supclti  7099  caucvgsrlemcl  7901  caucvgsrlemgt1  7907  axcaucvglemcl  8007  subval  8263  subcl  8270  divvalap  8746  divclap  8750  lbcl  9018  divfnzn  9741  flqcl  10414  flapcl  10416  cjval  11127  cjth  11128  cjf  11129  oddpwdclemodd  12465  oddpwdclemdc  12466  oddpwdc  12467  qnumdencl  12480  qnumdenbi  12485  ismgmid  13180  grpinvf  13350
  Copyright terms: Public domain W3C validator