ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5932
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3282 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5931 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3195 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  ∃!wreu 2487  {crab 2489  crio 5916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-uni 3860  df-iota 5246  df-riota 5917
This theorem is referenced by:  riotaprop  5941  riotass2  5944  riotass  5945  acexmidlemcase  5957  supclti  7121  caucvgsrlemcl  7932  caucvgsrlemgt1  7938  axcaucvglemcl  8038  subval  8294  subcl  8301  divvalap  8777  divclap  8781  lbcl  9049  divfnzn  9772  flqcl  10448  flapcl  10450  cjval  11241  cjth  11242  cjf  11243  oddpwdclemodd  12579  oddpwdclemdc  12580  oddpwdc  12581  qnumdencl  12594  qnumdenbi  12599  ismgmid  13294  grpinvf  13464
  Copyright terms: Public domain W3C validator