Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riotacl | GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3232 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 5822 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3145 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃!wreu 2450 {crab 2452 ℩crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: riotaprop 5832 riotass2 5835 riotass 5836 acexmidlemcase 5848 supclti 6975 caucvgsrlemcl 7751 caucvgsrlemgt1 7757 axcaucvglemcl 7857 subval 8111 subcl 8118 divvalap 8591 divclap 8595 lbcl 8862 divfnzn 9580 flqcl 10229 flapcl 10231 cjval 10809 cjth 10810 cjf 10811 oddpwdclemodd 12126 oddpwdclemdc 12127 oddpwdc 12128 qnumdencl 12141 qnumdenbi 12146 ismgmid 12631 grpinvf 12750 |
Copyright terms: Public domain | W3C validator |