ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5889
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3265 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5888 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3178 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  ∃!wreu 2474  {crab 2476  crio 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-uni 3837  df-iota 5216  df-riota 5874
This theorem is referenced by:  riotaprop  5898  riotass2  5901  riotass  5902  acexmidlemcase  5914  supclti  7059  caucvgsrlemcl  7851  caucvgsrlemgt1  7857  axcaucvglemcl  7957  subval  8213  subcl  8220  divvalap  8695  divclap  8699  lbcl  8967  divfnzn  9689  flqcl  10345  flapcl  10347  cjval  10992  cjth  10993  cjf  10994  oddpwdclemodd  12313  oddpwdclemdc  12314  oddpwdc  12315  qnumdencl  12328  qnumdenbi  12333  ismgmid  12963  grpinvf  13122
  Copyright terms: Public domain W3C validator