ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5848
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3242 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5847 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3155 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  ∃!wreu 2457  {crab 2459  crio 5833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180  df-riota 5834
This theorem is referenced by:  riotaprop  5857  riotass2  5860  riotass  5861  acexmidlemcase  5873  supclti  7000  caucvgsrlemcl  7791  caucvgsrlemgt1  7797  axcaucvglemcl  7897  subval  8152  subcl  8159  divvalap  8634  divclap  8638  lbcl  8906  divfnzn  9624  flqcl  10276  flapcl  10278  cjval  10857  cjth  10858  cjf  10859  oddpwdclemodd  12175  oddpwdclemdc  12176  oddpwdc  12177  qnumdencl  12190  qnumdenbi  12195  ismgmid  12802  grpinvf  12926
  Copyright terms: Public domain W3C validator