ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5812
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3227 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5811 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3140 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  ∃!wreu 2446  {crab 2448  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  riotaprop  5821  riotass2  5824  riotass  5825  acexmidlemcase  5837  supclti  6963  caucvgsrlemcl  7730  caucvgsrlemgt1  7736  axcaucvglemcl  7836  subval  8090  subcl  8097  divvalap  8570  divclap  8574  lbcl  8841  divfnzn  9559  flqcl  10208  flapcl  10210  cjval  10787  cjth  10788  cjf  10789  oddpwdclemodd  12104  oddpwdclemdc  12105  oddpwdc  12106  qnumdencl  12119  qnumdenbi  12124  ismgmid  12608
  Copyright terms: Public domain W3C validator