![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotacl | GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3121 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 5659 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sseldi 3037 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 ∃!wreu 2372 {crab 2374 ℩crio 5645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-sn 3472 df-pr 3473 df-uni 3676 df-iota 5014 df-riota 5646 |
This theorem is referenced by: riotaprop 5669 riotass2 5672 riotass 5673 acexmidlemcase 5685 supclti 6773 caucvgsrlemcl 7431 caucvgsrlemgt1 7437 axcaucvglemcl 7527 subval 7771 subcl 7778 divvalap 8238 divclap 8242 lbcl 8504 divfnzn 9205 flqcl 9829 flapcl 9831 cjval 10410 cjth 10411 cjf 10412 oddpwdclemodd 11593 oddpwdclemdc 11594 oddpwdc 11595 qnumdencl 11608 qnumdenbi 11613 |
Copyright terms: Public domain | W3C validator |