ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5895
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3269 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5894 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3182 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  ∃!wreu 2477  {crab 2479  crio 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-uni 3841  df-iota 5220  df-riota 5880
This theorem is referenced by:  riotaprop  5904  riotass2  5907  riotass  5908  acexmidlemcase  5920  supclti  7073  caucvgsrlemcl  7875  caucvgsrlemgt1  7881  axcaucvglemcl  7981  subval  8237  subcl  8244  divvalap  8720  divclap  8724  lbcl  8992  divfnzn  9714  flqcl  10382  flapcl  10384  cjval  11029  cjth  11030  cjf  11031  oddpwdclemodd  12367  oddpwdclemdc  12368  oddpwdc  12369  qnumdencl  12382  qnumdenbi  12387  ismgmid  13081  grpinvf  13251
  Copyright terms: Public domain W3C validator