| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotacl | GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 5968 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3222 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃!wreu 2510 {crab 2512 ℩crio 5952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 df-riota 5953 |
| This theorem is referenced by: riotaeqimp 5978 riotaprop 5979 riotass2 5982 riotass 5983 acexmidlemcase 5995 supclti 7161 caucvgsrlemcl 7972 caucvgsrlemgt1 7978 axcaucvglemcl 8078 subval 8334 subcl 8341 divvalap 8817 divclap 8821 lbcl 9089 divfnzn 9812 flqcl 10488 flapcl 10490 cjval 11351 cjth 11352 cjf 11353 oddpwdclemodd 12689 oddpwdclemdc 12690 oddpwdc 12691 qnumdencl 12704 qnumdenbi 12709 ismgmid 13405 grpinvf 13575 uspgredg2vlem 16012 usgredg2vlem1 16014 |
| Copyright terms: Public domain | W3C validator |