ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5888
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3264 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5887 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3177 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  ∃!wreu 2474  {crab 2476  crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  riotaprop  5897  riotass2  5900  riotass  5901  acexmidlemcase  5913  supclti  7057  caucvgsrlemcl  7849  caucvgsrlemgt1  7855  axcaucvglemcl  7955  subval  8211  subcl  8218  divvalap  8693  divclap  8697  lbcl  8965  divfnzn  9686  flqcl  10342  flapcl  10344  cjval  10989  cjth  10990  cjf  10991  oddpwdclemodd  12310  oddpwdclemdc  12311  oddpwdc  12312  qnumdencl  12325  qnumdenbi  12330  ismgmid  12960  grpinvf  13119
  Copyright terms: Public domain W3C validator