Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riotacl | GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 5811 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3140 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃!wreu 2446 {crab 2448 ℩crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: riotaprop 5821 riotass2 5824 riotass 5825 acexmidlemcase 5837 supclti 6963 caucvgsrlemcl 7730 caucvgsrlemgt1 7736 axcaucvglemcl 7836 subval 8090 subcl 8097 divvalap 8570 divclap 8574 lbcl 8841 divfnzn 9559 flqcl 10208 flapcl 10210 cjval 10787 cjth 10788 cjf 10789 oddpwdclemodd 12104 oddpwdclemdc 12105 oddpwdc 12106 qnumdencl 12119 qnumdenbi 12124 ismgmid 12608 |
Copyright terms: Public domain | W3C validator |