| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotacl | GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3269 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 5894 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3182 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃!wreu 2477 {crab 2479 ℩crio 5879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-uni 3841 df-iota 5220 df-riota 5880 |
| This theorem is referenced by: riotaprop 5904 riotass2 5907 riotass 5908 acexmidlemcase 5920 supclti 7073 caucvgsrlemcl 7875 caucvgsrlemgt1 7881 axcaucvglemcl 7981 subval 8237 subcl 8244 divvalap 8720 divclap 8724 lbcl 8992 divfnzn 9714 flqcl 10382 flapcl 10384 cjval 11029 cjth 11030 cjf 11031 oddpwdclemodd 12367 oddpwdclemdc 12368 oddpwdc 12369 qnumdencl 12382 qnumdenbi 12387 ismgmid 13081 grpinvf 13251 |
| Copyright terms: Public domain | W3C validator |