ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5892
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3268 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5891 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3181 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  ∃!wreu 2477  {crab 2479  crio 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219  df-riota 5877
This theorem is referenced by:  riotaprop  5901  riotass2  5904  riotass  5905  acexmidlemcase  5917  supclti  7064  caucvgsrlemcl  7856  caucvgsrlemgt1  7862  axcaucvglemcl  7962  subval  8218  subcl  8225  divvalap  8701  divclap  8705  lbcl  8973  divfnzn  9695  flqcl  10363  flapcl  10365  cjval  11010  cjth  11011  cjf  11012  oddpwdclemodd  12340  oddpwdclemdc  12341  oddpwdc  12342  qnumdencl  12355  qnumdenbi  12360  ismgmid  13020  grpinvf  13179
  Copyright terms: Public domain W3C validator