| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotacl | GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3282 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 5931 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3195 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃!wreu 2487 {crab 2489 ℩crio 5916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-uni 3860 df-iota 5246 df-riota 5917 |
| This theorem is referenced by: riotaprop 5941 riotass2 5944 riotass 5945 acexmidlemcase 5957 supclti 7121 caucvgsrlemcl 7932 caucvgsrlemgt1 7938 axcaucvglemcl 8038 subval 8294 subcl 8301 divvalap 8777 divclap 8781 lbcl 9049 divfnzn 9772 flqcl 10448 flapcl 10450 cjval 11241 cjth 11242 cjf 11243 oddpwdclemodd 12579 oddpwdclemdc 12580 oddpwdc 12581 qnumdencl 12594 qnumdenbi 12599 ismgmid 13294 grpinvf 13464 |
| Copyright terms: Public domain | W3C validator |