ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl GIF version

Theorem riotacl 5660
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3121 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 riotacl2 5659 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sseldi 3037 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1445  ∃!wreu 2372  {crab 2374  crio 5645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-uni 3676  df-iota 5014  df-riota 5646
This theorem is referenced by:  riotaprop  5669  riotass2  5672  riotass  5673  acexmidlemcase  5685  supclti  6773  caucvgsrlemcl  7431  caucvgsrlemgt1  7437  axcaucvglemcl  7527  subval  7771  subcl  7778  divvalap  8238  divclap  8242  lbcl  8504  divfnzn  9205  flqcl  9829  flapcl  9831  cjval  10410  cjth  10411  cjf  10412  oddpwdclemodd  11593  oddpwdclemdc  11594  oddpwdc  11595  qnumdencl  11608  qnumdenbi  11613
  Copyright terms: Public domain W3C validator