Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . . 6
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
2 | | breq1 3992 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑤𝑅𝑥)) |
3 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑧 ↔ 𝑤𝑅𝑧)) |
4 | 3 | rexbidv 2471 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
5 | 2, 4 | imbi12d 233 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
6 | 5 | cbvralv 2696 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
7 | 1, 6 | sylib 121 |
. . . . 5
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
8 | 7 | a1i 9 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
9 | 8 | ss2rabi 3229 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ⊆ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} |
10 | | supmoti.ti |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
11 | | supclti.2 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
12 | 10, 11 | supval2ti 6972 |
. . . 4
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
13 | 10, 11 | supeuti 6971 |
. . . . 5
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
14 | | riotacl2 5822 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
15 | 13, 14 | syl 14 |
. . . 4
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
16 | 12, 15 | eqeltrd 2247 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
17 | 9, 16 | sselid 3145 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)}) |
18 | | breq2 3993 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑤𝑅𝑥 ↔ 𝑤𝑅sup(𝐵, 𝐴, 𝑅))) |
19 | 18 | imbi1d 230 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → ((𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
20 | 19 | ralbidv 2470 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
21 | 20 | elrab 2886 |
. . 3
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
22 | 21 | simprbi 273 |
. 2
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} → ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
23 | | breq1 3992 |
. . . . 5
⊢ (𝑤 = 𝐶 → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
24 | | breq1 3992 |
. . . . . 6
⊢ (𝑤 = 𝐶 → (𝑤𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
25 | 24 | rexbidv 2471 |
. . . . 5
⊢ (𝑤 = 𝐶 → (∃𝑧 ∈ 𝐵 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
26 | 23, 25 | imbi12d 233 |
. . . 4
⊢ (𝑤 = 𝐶 → ((𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
27 | 26 | rspccv 2831 |
. . 3
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → (𝐶 ∈ 𝐴 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
28 | 27 | impd 252 |
. 2
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
29 | 17, 22, 28 | 3syl 17 |
1
⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |