| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . . 6
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 2 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑤𝑅𝑥)) |
| 3 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑧 ↔ 𝑤𝑅𝑧)) |
| 4 | 3 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
| 5 | 2, 4 | imbi12d 234 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
| 6 | 5 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
| 7 | 1, 6 | sylib 122 |
. . . . 5
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
| 8 | 7 | a1i 9 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
| 9 | 8 | ss2rabi 3265 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ⊆ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} |
| 10 | | supmoti.ti |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| 11 | | supclti.2 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 12 | 10, 11 | supval2ti 7061 |
. . . 4
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
| 13 | 10, 11 | supeuti 7060 |
. . . . 5
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 14 | | riotacl2 5891 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 15 | 13, 14 | syl 14 |
. . . 4
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 16 | 12, 15 | eqeltrd 2273 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))}) |
| 17 | 9, 16 | sselid 3181 |
. 2
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)}) |
| 18 | | breq2 4037 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑤𝑅𝑥 ↔ 𝑤𝑅sup(𝐵, 𝐴, 𝑅))) |
| 19 | 18 | imbi1d 231 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → ((𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
| 20 | 19 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
| 21 | 20 | elrab 2920 |
. . 3
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
| 22 | 21 | simprbi 275 |
. 2
⊢
(sup(𝐵, 𝐴, 𝑅) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)} → ∀𝑤 ∈ 𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
| 23 | | breq1 4036 |
. . . . 5
⊢ (𝑤 = 𝐶 → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
| 24 | | breq1 4036 |
. . . . . 6
⊢ (𝑤 = 𝐶 → (𝑤𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
| 25 | 24 | rexbidv 2498 |
. . . . 5
⊢ (𝑤 = 𝐶 → (∃𝑧 ∈ 𝐵 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
| 26 | 23, 25 | imbi12d 234 |
. . . 4
⊢ (𝑤 = 𝐶 → ((𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) ↔ (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
| 27 | 26 | rspccv 2865 |
. . 3
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → (𝐶 ∈ 𝐴 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧))) |
| 28 | 27 | impd 254 |
. 2
⊢
(∀𝑤 ∈
𝐴 (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
| 29 | 17, 22, 28 | 3syl 17 |
1
⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |