| Step | Hyp | Ref
 | Expression | 
| 1 |   | bezoutlemstep.w-is-bezout | 
. . 3
⊢ (𝜃 → [𝑊 / 𝑟]𝜑) | 
| 2 |   | bezoutlemstep.is-bezout | 
. . . . 5
⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 3 | 2 | sbcbii 3049 | 
. . . 4
⊢
([𝑊 / 𝑟]𝜑 ↔ [𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 4 |   | bezoutlemstep.w | 
. . . . 5
⊢ (𝜃 → 𝑊 ∈ ℕ) | 
| 5 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑟 = 𝑊 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 6 | 5 | 2rexbidv 2522 | 
. . . . . 6
⊢ (𝑟 = 𝑊 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 7 | 6 | sbcieg 3022 | 
. . . . 5
⊢ (𝑊 ∈ ℕ →
([𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 8 | 4, 7 | syl 14 | 
. . . 4
⊢ (𝜃 → ([𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 9 | 3, 8 | bitrid 192 | 
. . 3
⊢ (𝜃 → ([𝑊 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 10 | 1, 9 | mpbid 147 | 
. 2
⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 11 |   | bezoutlemstep.y-is-bezout | 
. . . . . . 7
⊢ (𝜃 → [𝑦 / 𝑟]𝜑) | 
| 12 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑢 → (𝐴 · 𝑠) = (𝐴 · 𝑢)) | 
| 13 | 12 | oveq1d 5937 | 
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑢 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑡))) | 
| 14 | 13 | eqeq2d 2208 | 
. . . . . . . . . . 11
⊢ (𝑠 = 𝑢 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡)))) | 
| 15 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑣 → (𝐵 · 𝑡) = (𝐵 · 𝑣)) | 
| 16 | 15 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 17 | 16 | eqeq2d 2208 | 
. . . . . . . . . . 11
⊢ (𝑡 = 𝑣 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) | 
| 18 | 14, 17 | cbvrex2v 2743 | 
. . . . . . . . . 10
⊢
(∃𝑠 ∈
ℤ ∃𝑡 ∈
ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 19 | 2, 18 | bitri 184 | 
. . . . . . . . 9
⊢ (𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 20 | 19 | sbbii 1779 | 
. . . . . . . 8
⊢ ([𝑦 / 𝑟]𝜑 ↔ [𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 21 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑟∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) | 
| 22 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑟 = 𝑦 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) | 
| 23 | 22 | 2rexbidv 2522 | 
. . . . . . . . 9
⊢ (𝑟 = 𝑦 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) | 
| 24 | 21, 23 | sbie 1805 | 
. . . . . . . 8
⊢ ([𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 25 | 20, 24 | bitri 184 | 
. . . . . . 7
⊢ ([𝑦 / 𝑟]𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 26 | 11, 25 | sylib 122 | 
. . . . . 6
⊢ (𝜃 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 27 | 26 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 28 |   | bezoutlemstep.y-nn0 | 
. . . . . . . . . . 11
⊢ (𝜃 → 𝑦 ∈ ℕ0) | 
| 29 | 28 | ad4antr 494 | 
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℕ0) | 
| 30 | 29 | nn0zd 9446 | 
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℤ) | 
| 31 | 4 | ad4antr 494 | 
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℕ) | 
| 32 | 30, 31 | zmodcld 10437 | 
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) ∈
ℕ0) | 
| 33 |   | zq 9700 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℚ) | 
| 34 | 30, 33 | syl 14 | 
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℚ) | 
| 35 | 31 | nnzd 9447 | 
. . . . . . . . . . 11
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℤ) | 
| 36 |   | zq 9700 | 
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℤ → 𝑊 ∈
ℚ) | 
| 37 | 35, 36 | syl 14 | 
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℚ) | 
| 38 | 31 | nngt0d 9034 | 
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 0 < 𝑊) | 
| 39 |   | modqlt 10425 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℚ ∧ 𝑊 ∈ ℚ ∧ 0 <
𝑊) → (𝑦 mod 𝑊) < 𝑊) | 
| 40 | 34, 37, 38, 39 | syl3anc 1249 | 
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) < 𝑊) | 
| 41 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑦 mod 𝑊) = (𝑦 mod 𝑊) | 
| 42 |   | modremain 12094 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ((𝑦 mod 𝑊) = (𝑦 mod 𝑊) ↔ ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) | 
| 43 | 41, 42 | mpbii 148 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) | 
| 44 | 30, 31, 32, 40, 43 | syl112anc 1253 | 
. . . . . . . 8
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) | 
| 45 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑢 ∈ ℤ) | 
| 46 | 45 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℤ) | 
| 47 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℤ) | 
| 48 |   | simplrl 535 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑠 ∈ ℤ) | 
| 49 | 48 | ad3antrrr 492 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℤ) | 
| 50 | 47, 49 | zmulcld 9454 | 
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℤ) | 
| 51 | 46, 50 | zsubcld 9453 | 
. . . . . . . . . . . 12
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑢 − (𝑞 · 𝑠)) ∈ ℤ) | 
| 52 |   | simprr 531 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑣 ∈ ℤ) | 
| 53 | 52 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℤ) | 
| 54 |   | simplrr 536 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑡 ∈ ℤ) | 
| 55 | 54 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℤ) | 
| 56 | 47, 55 | zmulcld 9454 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℤ) | 
| 57 | 53, 56 | zsubcld 9453 | 
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑣 − (𝑞 · 𝑡)) ∈ ℤ) | 
| 58 |   | simplr 528 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) | 
| 59 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 60 | 59 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 61 | 60 | oveq2d 5938 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 62 | 47 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℂ) | 
| 63 |   | bezoutlemstep.a | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → 𝐴 ∈
ℕ0) | 
| 64 | 63 | ad5antr 496 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈
ℕ0) | 
| 65 | 64 | nn0cnd 9304 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈ ℂ) | 
| 66 | 49 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℂ) | 
| 67 | 65, 66 | mulcld 8047 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑠) ∈ ℂ) | 
| 68 |   | bezoutlemstep.b | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → 𝐵 ∈
ℕ0) | 
| 69 | 68 | ad5antr 496 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈
ℕ0) | 
| 70 | 69 | nn0cnd 9304 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈ ℂ) | 
| 71 | 55 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℂ) | 
| 72 | 70, 71 | mulcld 8047 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑡) ∈ ℂ) | 
| 73 | 62, 67, 72 | adddid 8051 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡))) = ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡)))) | 
| 74 | 62, 65, 66 | mul12d 8178 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐴 · 𝑠)) = (𝐴 · (𝑞 · 𝑠))) | 
| 75 | 62, 70, 71 | mul12d 8178 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐵 · 𝑡)) = (𝐵 · (𝑞 · 𝑡))) | 
| 76 | 74, 75 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡))) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) | 
| 77 | 61, 73, 76 | 3eqtrd 2233 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) | 
| 78 | 58, 77 | oveq12d 5940 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡))))) | 
| 79 |   | simprr 531 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) | 
| 80 | 28 | ad5antr 496 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℕ0) | 
| 81 | 80 | nn0cnd 9304 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℂ) | 
| 82 | 31 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℕ) | 
| 83 | 82 | nncnd 9004 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℂ) | 
| 84 | 62, 83 | mulcld 8047 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) ∈ ℂ) | 
| 85 | 34 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℚ) | 
| 86 | 37 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℚ) | 
| 87 | 38 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 0 < 𝑊) | 
| 88 | 85, 86, 87 | modqcld 10420 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℚ) | 
| 89 |   | qcn 9708 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 mod 𝑊) ∈ ℚ → (𝑦 mod 𝑊) ∈ ℂ) | 
| 90 | 88, 89 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℂ) | 
| 91 | 81, 84, 90 | subaddd 8355 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊) ↔ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) | 
| 92 | 79, 91 | mpbird 167 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊)) | 
| 93 | 46 | zcnd 9449 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℂ) | 
| 94 | 65, 93 | mulcld 8047 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑢) ∈ ℂ) | 
| 95 | 53 | zcnd 9449 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℂ) | 
| 96 | 70, 95 | mulcld 8047 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑣) ∈ ℂ) | 
| 97 | 62, 66 | mulcld 8047 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℂ) | 
| 98 | 65, 97 | mulcld 8047 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑞 · 𝑠)) ∈ ℂ) | 
| 99 | 62, 71 | mulcld 8047 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℂ) | 
| 100 | 70, 99 | mulcld 8047 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑞 · 𝑡)) ∈ ℂ) | 
| 101 | 94, 96, 98, 100 | addsub4d 8384 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) | 
| 102 | 78, 92, 101 | 3eqtr3d 2237 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) | 
| 103 | 65, 93, 97 | subdid 8440 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑢 − (𝑞 · 𝑠))) = ((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠)))) | 
| 104 | 70, 95, 99 | subdid 8440 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑣 − (𝑞 · 𝑡))) = ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡)))) | 
| 105 | 103, 104 | oveq12d 5940 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) | 
| 106 | 102, 105 | eqtr4d 2232 | 
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) | 
| 107 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → (𝐵 · 𝑘) = (𝐵 · (𝑣 − (𝑞 · 𝑡)))) | 
| 108 | 107 | oveq2d 5938 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) | 
| 109 | 108 | eqeq2d 2208 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))))) | 
| 110 | 109 | rspcev 2868 | 
. . . . . . . . . . . . 13
⊢ (((𝑣 − (𝑞 · 𝑡)) ∈ ℤ ∧ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) | 
| 111 | 57, 106, 110 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) | 
| 112 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (𝐴 · 𝑗) = (𝐴 · (𝑢 − (𝑞 · 𝑠)))) | 
| 113 | 112 | oveq1d 5937 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) | 
| 114 | 113 | eqeq2d 2208 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))) | 
| 115 | 114 | rexbidv 2498 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))) | 
| 116 | 115 | rspcev 2868 | 
. . . . . . . . . . . 12
⊢ (((𝑢 − (𝑞 · 𝑠)) ∈ ℤ ∧ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘))) | 
| 117 | 51, 111, 116 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘))) | 
| 118 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑠 → (𝐴 · 𝑗) = (𝐴 · 𝑠)) | 
| 119 | 118 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑠 → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑘))) | 
| 120 | 119 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑠 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)))) | 
| 121 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑡 → (𝐵 · 𝑘) = (𝐵 · 𝑡)) | 
| 122 | 121 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑡 → ((𝐴 · 𝑠) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 123 | 122 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 124 | 120, 123 | cbvrex2v 2743 | 
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
ℤ ∃𝑘 ∈
ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 125 | 117, 124 | sylib 122 | 
. . . . . . . . . 10
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 126 | 32 | adantr 276 | 
. . . . . . . . . . 11
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈
ℕ0) | 
| 127 |   | eqeq1 2203 | 
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑦 mod 𝑊) → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 128 | 127 | 2rexbidv 2522 | 
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑦 mod 𝑊) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 129 | 128 | sbcieg 3022 | 
. . . . . . . . . . 11
⊢ ((𝑦 mod 𝑊) ∈ ℕ0 →
([(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 130 | 126, 129 | syl 14 | 
. . . . . . . . . 10
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 131 | 125, 130 | mpbird 167 | 
. . . . . . . . 9
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 132 | 2 | sbcbii 3049 | 
. . . . . . . . 9
⊢
([(𝑦 mod
𝑊) / 𝑟]𝜑 ↔ [(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 133 | 131, 132 | sylibr 134 | 
. . . . . . . 8
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]𝜑) | 
| 134 | 44, 133 | rexlimddv 2619 | 
. . . . . . 7
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → [(𝑦 mod 𝑊) / 𝑟]𝜑) | 
| 135 | 134 | ex 115 | 
. . . . . 6
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) | 
| 136 | 135 | rexlimdvva 2622 | 
. . . . 5
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) | 
| 137 | 27, 136 | mpd 13 | 
. . . 4
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → [(𝑦 mod 𝑊) / 𝑟]𝜑) | 
| 138 | 137 | ex 115 | 
. . 3
⊢ ((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) | 
| 139 | 138 | rexlimdvva 2622 | 
. 2
⊢ (𝜃 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) | 
| 140 | 10, 139 | mpd 13 | 
1
⊢ (𝜃 → [(𝑦 mod 𝑊) / 𝑟]𝜑) |