Step | Hyp | Ref
| Expression |
1 | | bezoutlemstep.w-is-bezout |
. . 3
⊢ (𝜃 → [𝑊 / 𝑟]𝜑) |
2 | | bezoutlemstep.is-bezout |
. . . . 5
⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
3 | 2 | sbcbii 3010 |
. . . 4
⊢
([𝑊 / 𝑟]𝜑 ↔ [𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
4 | | bezoutlemstep.w |
. . . . 5
⊢ (𝜃 → 𝑊 ∈ ℕ) |
5 | | eqeq1 2172 |
. . . . . . 7
⊢ (𝑟 = 𝑊 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
6 | 5 | 2rexbidv 2491 |
. . . . . 6
⊢ (𝑟 = 𝑊 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
7 | 6 | sbcieg 2983 |
. . . . 5
⊢ (𝑊 ∈ ℕ →
([𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
8 | 4, 7 | syl 14 |
. . . 4
⊢ (𝜃 → ([𝑊 / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
9 | 3, 8 | syl5bb 191 |
. . 3
⊢ (𝜃 → ([𝑊 / 𝑟]𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
10 | 1, 9 | mpbid 146 |
. 2
⊢ (𝜃 → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
11 | | bezoutlemstep.y-is-bezout |
. . . . . . 7
⊢ (𝜃 → [𝑦 / 𝑟]𝜑) |
12 | | oveq2 5850 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑢 → (𝐴 · 𝑠) = (𝐴 · 𝑢)) |
13 | 12 | oveq1d 5857 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑢 → ((𝐴 · 𝑠) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑡))) |
14 | 13 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑢 → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡)))) |
15 | | oveq2 5850 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑣 → (𝐵 · 𝑡) = (𝐵 · 𝑣)) |
16 | 15 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑡)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
17 | 16 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑣 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑡)) ↔ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
18 | 14, 17 | cbvrex2v 2706 |
. . . . . . . . . 10
⊢
(∃𝑠 ∈
ℤ ∃𝑡 ∈
ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
19 | 2, 18 | bitri 183 |
. . . . . . . . 9
⊢ (𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
20 | 19 | sbbii 1753 |
. . . . . . . 8
⊢ ([𝑦 / 𝑟]𝜑 ↔ [𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
21 | | nfv 1516 |
. . . . . . . . 9
⊢
Ⅎ𝑟∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) |
22 | | eqeq1 2172 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑦 → (𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
23 | 22 | 2rexbidv 2491 |
. . . . . . . . 9
⊢ (𝑟 = 𝑦 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
24 | 21, 23 | sbie 1779 |
. . . . . . . 8
⊢ ([𝑦 / 𝑟]∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑟 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
25 | 20, 24 | bitri 183 |
. . . . . . 7
⊢ ([𝑦 / 𝑟]𝜑 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
26 | 11, 25 | sylib 121 |
. . . . . 6
⊢ (𝜃 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
27 | 26 | ad2antrr 480 |
. . . . 5
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
28 | | bezoutlemstep.y-nn0 |
. . . . . . . . . . 11
⊢ (𝜃 → 𝑦 ∈ ℕ0) |
29 | 28 | ad4antr 486 |
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℕ0) |
30 | 29 | nn0zd 9311 |
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℤ) |
31 | 4 | ad4antr 486 |
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℕ) |
32 | 30, 31 | zmodcld 10280 |
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) ∈
ℕ0) |
33 | | zq 9564 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℚ) |
34 | 30, 33 | syl 14 |
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑦 ∈ ℚ) |
35 | 31 | nnzd 9312 |
. . . . . . . . . . 11
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℤ) |
36 | | zq 9564 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℤ → 𝑊 ∈
ℚ) |
37 | 35, 36 | syl 14 |
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 𝑊 ∈ ℚ) |
38 | 31 | nngt0d 8901 |
. . . . . . . . . 10
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → 0 < 𝑊) |
39 | | modqlt 10268 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℚ ∧ 𝑊 ∈ ℚ ∧ 0 <
𝑊) → (𝑦 mod 𝑊) < 𝑊) |
40 | 34, 37, 38, 39 | syl3anc 1228 |
. . . . . . . . 9
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → (𝑦 mod 𝑊) < 𝑊) |
41 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑦 mod 𝑊) = (𝑦 mod 𝑊) |
42 | | modremain 11866 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ((𝑦 mod 𝑊) = (𝑦 mod 𝑊) ↔ ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) |
43 | 41, 42 | mpbii 147 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ 𝑊 ∈ ℕ ∧ ((𝑦 mod 𝑊) ∈ ℕ0 ∧ (𝑦 mod 𝑊) < 𝑊)) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) |
44 | 30, 31, 32, 40, 43 | syl112anc 1232 |
. . . . . . . 8
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → ∃𝑞 ∈ ℤ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) |
45 | | simprl 521 |
. . . . . . . . . . . . . 14
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑢 ∈ ℤ) |
46 | 45 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℤ) |
47 | | simprl 521 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℤ) |
48 | | simplrl 525 |
. . . . . . . . . . . . . . 15
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑠 ∈ ℤ) |
49 | 48 | ad3antrrr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℤ) |
50 | 47, 49 | zmulcld 9319 |
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℤ) |
51 | 46, 50 | zsubcld 9318 |
. . . . . . . . . . . 12
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑢 − (𝑞 · 𝑠)) ∈ ℤ) |
52 | | simprr 522 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑣 ∈ ℤ) |
53 | 52 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℤ) |
54 | | simplrr 526 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑡 ∈ ℤ) |
55 | 54 | ad3antrrr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℤ) |
56 | 47, 55 | zmulcld 9319 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℤ) |
57 | 53, 56 | zsubcld 9318 |
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑣 − (𝑞 · 𝑡)) ∈ ℤ) |
58 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
59 | | simpr 109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
60 | 59 | ad3antrrr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
61 | 60 | oveq2d 5858 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
62 | 47 | zcnd 9314 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑞 ∈ ℂ) |
63 | | bezoutlemstep.a |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → 𝐴 ∈
ℕ0) |
64 | 63 | ad5antr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈
ℕ0) |
65 | 64 | nn0cnd 9169 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐴 ∈ ℂ) |
66 | 49 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑠 ∈ ℂ) |
67 | 65, 66 | mulcld 7919 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑠) ∈ ℂ) |
68 | | bezoutlemstep.b |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → 𝐵 ∈
ℕ0) |
69 | 68 | ad5antr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈
ℕ0) |
70 | 69 | nn0cnd 9169 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝐵 ∈ ℂ) |
71 | 55 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑡 ∈ ℂ) |
72 | 70, 71 | mulcld 7919 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑡) ∈ ℂ) |
73 | 62, 67, 72 | adddid 7923 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · ((𝐴 · 𝑠) + (𝐵 · 𝑡))) = ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡)))) |
74 | 62, 65, 66 | mul12d 8050 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐴 · 𝑠)) = (𝐴 · (𝑞 · 𝑠))) |
75 | 62, 70, 71 | mul12d 8050 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · (𝐵 · 𝑡)) = (𝐵 · (𝑞 · 𝑡))) |
76 | 74, 75 | oveq12d 5860 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · (𝐴 · 𝑠)) + (𝑞 · (𝐵 · 𝑡))) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) |
77 | 61, 73, 76 | 3eqtrd 2202 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) = ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) |
78 | 58, 77 | oveq12d 5860 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡))))) |
79 | | simprr 522 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦) |
80 | 28 | ad5antr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℕ0) |
81 | 80 | nn0cnd 9169 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℂ) |
82 | 31 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℕ) |
83 | 82 | nncnd 8871 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℂ) |
84 | 62, 83 | mulcld 7919 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑊) ∈ ℂ) |
85 | 34 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑦 ∈ ℚ) |
86 | 37 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑊 ∈ ℚ) |
87 | 38 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 0 < 𝑊) |
88 | 85, 86, 87 | modqcld 10263 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℚ) |
89 | | qcn 9572 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 mod 𝑊) ∈ ℚ → (𝑦 mod 𝑊) ∈ ℂ) |
90 | 88, 89 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈ ℂ) |
91 | 81, 84, 90 | subaddd 8227 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊) ↔ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) |
92 | 79, 91 | mpbird 166 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 − (𝑞 · 𝑊)) = (𝑦 mod 𝑊)) |
93 | 46 | zcnd 9314 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑢 ∈ ℂ) |
94 | 65, 93 | mulcld 7919 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · 𝑢) ∈ ℂ) |
95 | 53 | zcnd 9314 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → 𝑣 ∈ ℂ) |
96 | 70, 95 | mulcld 7919 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · 𝑣) ∈ ℂ) |
97 | 62, 66 | mulcld 7919 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑠) ∈ ℂ) |
98 | 65, 97 | mulcld 7919 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑞 · 𝑠)) ∈ ℂ) |
99 | 62, 71 | mulcld 7919 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑞 · 𝑡) ∈ ℂ) |
100 | 70, 99 | mulcld 7919 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑞 · 𝑡)) ∈ ℂ) |
101 | 94, 96, 98, 100 | addsub4d 8256 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (((𝐴 · 𝑢) + (𝐵 · 𝑣)) − ((𝐴 · (𝑞 · 𝑠)) + (𝐵 · (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) |
102 | 78, 92, 101 | 3eqtr3d 2206 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) |
103 | 65, 93, 97 | subdid 8312 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐴 · (𝑢 − (𝑞 · 𝑠))) = ((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠)))) |
104 | 70, 95, 99 | subdid 8312 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝐵 · (𝑣 − (𝑞 · 𝑡))) = ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡)))) |
105 | 103, 104 | oveq12d 5860 |
. . . . . . . . . . . . . 14
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))) = (((𝐴 · 𝑢) − (𝐴 · (𝑞 · 𝑠))) + ((𝐵 · 𝑣) − (𝐵 · (𝑞 · 𝑡))))) |
106 | 102, 105 | eqtr4d 2201 |
. . . . . . . . . . . . 13
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) |
107 | | oveq2 5850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → (𝐵 · 𝑘) = (𝐵 · (𝑣 − (𝑞 · 𝑡)))) |
108 | 107 | oveq2d 5858 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) |
109 | 108 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑣 − (𝑞 · 𝑡)) → ((𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡)))))) |
110 | 109 | rspcev 2830 |
. . . . . . . . . . . . 13
⊢ (((𝑣 − (𝑞 · 𝑡)) ∈ ℤ ∧ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · (𝑣 − (𝑞 · 𝑡))))) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) |
111 | 57, 106, 110 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) |
112 | | oveq2 5850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (𝐴 · 𝑗) = (𝐴 · (𝑢 − (𝑞 · 𝑠)))) |
113 | 112 | oveq1d 5857 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) |
114 | 113 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))) |
115 | 114 | rexbidv 2467 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑢 − (𝑞 · 𝑠)) → (∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘)))) |
116 | 115 | rspcev 2830 |
. . . . . . . . . . . 12
⊢ (((𝑢 − (𝑞 · 𝑠)) ∈ ℤ ∧ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · (𝑢 − (𝑞 · 𝑠))) + (𝐵 · 𝑘))) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘))) |
117 | 51, 111, 116 | syl2anc 409 |
. . . . . . . . . . 11
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘))) |
118 | | oveq2 5850 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑠 → (𝐴 · 𝑗) = (𝐴 · 𝑠)) |
119 | 118 | oveq1d 5857 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑠 → ((𝐴 · 𝑗) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑘))) |
120 | 119 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑠 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)))) |
121 | | oveq2 5850 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑡 → (𝐵 · 𝑘) = (𝐵 · 𝑡)) |
122 | 121 | oveq2d 5858 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑡 → ((𝐴 · 𝑠) + (𝐵 · 𝑘)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
123 | 122 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → ((𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑘)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
124 | 120, 123 | cbvrex2v 2706 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
ℤ ∃𝑘 ∈
ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑗) + (𝐵 · 𝑘)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
125 | 117, 124 | sylib 121 |
. . . . . . . . . 10
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
126 | 32 | adantr 274 |
. . . . . . . . . . 11
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → (𝑦 mod 𝑊) ∈
ℕ0) |
127 | | eqeq1 2172 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑦 mod 𝑊) → (𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
128 | 127 | 2rexbidv 2491 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑦 mod 𝑊) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
129 | 128 | sbcieg 2983 |
. . . . . . . . . . 11
⊢ ((𝑦 mod 𝑊) ∈ ℕ0 →
([(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
130 | 126, 129 | syl 14 |
. . . . . . . . . 10
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → ([(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ (𝑦 mod 𝑊) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
131 | 125, 130 | mpbird 166 |
. . . . . . . . 9
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
132 | 2 | sbcbii 3010 |
. . . . . . . . 9
⊢
([(𝑦 mod
𝑊) / 𝑟]𝜑 ↔ [(𝑦 mod 𝑊) / 𝑟]∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
133 | 131, 132 | sylibr 133 |
. . . . . . . 8
⊢
((((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) ∧ (𝑞 ∈ ℤ ∧ ((𝑞 · 𝑊) + (𝑦 mod 𝑊)) = 𝑦)) → [(𝑦 mod 𝑊) / 𝑟]𝜑) |
134 | 44, 133 | rexlimddv 2588 |
. . . . . . 7
⊢
(((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) → [(𝑦 mod 𝑊) / 𝑟]𝜑) |
135 | 134 | ex 114 |
. . . . . 6
⊢ ((((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) |
136 | 135 | rexlimdvva 2591 |
. . . . 5
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑦 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) |
137 | 27, 136 | mpd 13 |
. . . 4
⊢ (((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) ∧ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → [(𝑦 mod 𝑊) / 𝑟]𝜑) |
138 | 137 | ex 114 |
. . 3
⊢ ((𝜃 ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ)) → (𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) |
139 | 138 | rexlimdvva 2591 |
. 2
⊢ (𝜃 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑊 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)) → [(𝑦 mod 𝑊) / 𝑟]𝜑)) |
140 | 10, 139 | mpd 13 |
1
⊢ (𝜃 → [(𝑦 mod 𝑊) / 𝑟]𝜑) |