| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3030 opeldmg 4888 elreldm 4909 ssimaex 5647 resflem 5751 f1eqcocnv 5867 fliftfun 5872 isopolem 5898 isosolem 5900 brtposg 6347 issmo2 6382 nnmcl 6574 nnawordi 6608 nnmordi 6609 nnmord 6610 swoord1 6656 ecopovtrn 6726 ecopovtrng 6729 f1domg 6856 mapen 6950 mapxpen 6952 supmoti 7102 isotilem 7115 exmidomniim 7250 enq0tr 7554 prubl 7606 ltexprlemloc 7727 addextpr 7741 recexprlem1ssl 7753 recexprlem1ssu 7754 cauappcvgprlemdisj 7771 mulcmpblnr 7861 mulgt0sr 7898 map2psrprg 7925 ltleletr 8161 ltle 8167 ltadd2 8499 leltadd 8527 reapti 8659 apreap 8667 reapcotr 8678 apcotr 8687 addext 8690 mulext1 8692 zapne 9454 zextle 9471 prime 9479 uzin 9688 indstr 9721 supinfneg 9723 infsupneg 9724 ublbneg 9741 xrltle 9927 xrre2 9950 icc0r 10055 fzrevral 10234 flqge 10432 modqadd1 10513 modqmul1 10529 facdiv 10890 elfzelfzccat 11064 resqrexlemgt0 11375 abs00ap 11417 absext 11418 climshftlemg 11657 climcaucn 11706 dvds2lem 12158 dvdsfac 12215 ltoddhalfle 12248 ndvdsadd 12286 bitsinv1lem 12316 gcdaddm 12349 bezoutlembi 12370 gcdzeq 12387 algcvga 12417 rpdvds 12465 cncongr1 12469 cncongr2 12470 prmind2 12486 euclemma 12512 isprm6 12513 rpexp 12519 sqrt2irr 12528 odzdvds 12612 pclemub 12654 pceulem 12661 pc2dvds 12697 fldivp1 12715 infpnlem1 12726 prmunb 12729 issubg4m 13573 imasabl 13716 fiinbas 14565 bastg 14577 tgcl 14580 opnssneib 14672 tgcnp 14725 iscnp4 14734 cnntr 14741 cnptopresti 14754 lmss 14762 lmtopcnp 14766 txdis 14793 xblss2ps 14920 xblss2 14921 blsscls2 15009 metequiv2 15012 bdxmet 15017 mulc1cncf 15105 cncfco 15107 sincosq2sgn 15343 sincosq3sgn 15344 sincosq4sgn 15345 lgsdir 15556 lgsquadlem2 15599 2sqlem8a 15643 2sqlem10 15646 triap 16042 |
| Copyright terms: Public domain | W3C validator |