| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3020 opeldmg 4871 elreldm 4892 ssimaex 5622 resflem 5726 f1eqcocnv 5838 fliftfun 5843 isopolem 5869 isosolem 5871 brtposg 6312 issmo2 6347 nnmcl 6539 nnawordi 6573 nnmordi 6574 nnmord 6575 swoord1 6621 ecopovtrn 6691 ecopovtrng 6694 f1domg 6817 mapen 6907 mapxpen 6909 supmoti 7059 isotilem 7072 exmidomniim 7207 enq0tr 7501 prubl 7553 ltexprlemloc 7674 addextpr 7688 recexprlem1ssl 7700 recexprlem1ssu 7701 cauappcvgprlemdisj 7718 mulcmpblnr 7808 mulgt0sr 7845 map2psrprg 7872 ltleletr 8108 ltle 8114 ltadd2 8446 leltadd 8474 reapti 8606 apreap 8614 reapcotr 8625 apcotr 8634 addext 8637 mulext1 8639 zapne 9400 zextle 9417 prime 9425 uzin 9634 indstr 9667 supinfneg 9669 infsupneg 9670 ublbneg 9687 xrltle 9873 xrre2 9896 icc0r 10001 fzrevral 10180 flqge 10372 modqadd1 10453 modqmul1 10469 facdiv 10830 resqrexlemgt0 11185 abs00ap 11227 absext 11228 climshftlemg 11467 climcaucn 11516 dvds2lem 11968 dvdsfac 12025 ltoddhalfle 12058 ndvdsadd 12096 gcdaddm 12151 bezoutlembi 12172 gcdzeq 12189 algcvga 12219 rpdvds 12267 cncongr1 12271 cncongr2 12272 prmind2 12288 euclemma 12314 isprm6 12315 rpexp 12321 sqrt2irr 12330 odzdvds 12414 pclemub 12456 pceulem 12463 pc2dvds 12499 fldivp1 12517 infpnlem1 12528 prmunb 12531 issubg4m 13323 imasabl 13466 fiinbas 14285 bastg 14297 tgcl 14300 opnssneib 14392 tgcnp 14445 iscnp4 14454 cnntr 14461 cnptopresti 14474 lmss 14482 lmtopcnp 14486 txdis 14513 xblss2ps 14640 xblss2 14641 blsscls2 14729 metequiv2 14732 bdxmet 14737 mulc1cncf 14825 cncfco 14827 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 lgsdir 15276 lgsquadlem2 15319 2sqlem8a 15363 2sqlem10 15366 triap 15673 |
| Copyright terms: Public domain | W3C validator |