Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr4d 202 sbciegft 2981 opeldmg 4809 elreldm 4830 ssimaex 5547 resflem 5649 f1eqcocnv 5759 fliftfun 5764 isopolem 5790 isosolem 5792 brtposg 6222 issmo2 6257 nnmcl 6449 nnawordi 6483 nnmordi 6484 nnmord 6485 swoord1 6530 ecopovtrn 6598 ecopovtrng 6601 f1domg 6724 mapen 6812 mapxpen 6814 supmoti 6958 isotilem 6971 exmidomniim 7105 enq0tr 7375 prubl 7427 ltexprlemloc 7548 addextpr 7562 recexprlem1ssl 7574 recexprlem1ssu 7575 cauappcvgprlemdisj 7592 mulcmpblnr 7682 mulgt0sr 7719 map2psrprg 7746 ltleletr 7980 ltle 7986 ltadd2 8317 leltadd 8345 reapti 8477 apreap 8485 reapcotr 8496 apcotr 8505 addext 8508 mulext1 8510 zapne 9265 zextle 9282 prime 9290 uzin 9498 indstr 9531 supinfneg 9533 infsupneg 9534 ublbneg 9551 xrltle 9734 xrre2 9757 icc0r 9862 fzrevral 10040 flqge 10217 modqadd1 10296 modqmul1 10312 facdiv 10651 resqrexlemgt0 10962 abs00ap 11004 absext 11005 climshftlemg 11243 climcaucn 11292 dvds2lem 11743 dvdsfac 11798 ltoddhalfle 11830 ndvdsadd 11868 gcdaddm 11917 bezoutlembi 11938 gcdzeq 11955 algcvga 11983 rpdvds 12031 cncongr1 12035 cncongr2 12036 prmind2 12052 euclemma 12078 isprm6 12079 rpexp 12085 sqrt2irr 12094 odzdvds 12177 pclemub 12219 pceulem 12226 pc2dvds 12261 fldivp1 12278 infpnlem1 12289 prmunb 12292 fiinbas 12697 bastg 12711 tgcl 12714 opnssneib 12806 tgcnp 12859 iscnp4 12868 cnntr 12875 cnptopresti 12888 lmss 12896 lmtopcnp 12900 txdis 12927 xblss2ps 13054 xblss2 13055 blsscls2 13143 metequiv2 13146 bdxmet 13151 mulc1cncf 13226 cncfco 13228 sincosq2sgn 13398 sincosq3sgn 13399 sincosq4sgn 13400 lgsdir 13586 2sqlem8a 13608 2sqlem10 13611 triap 13918 |
Copyright terms: Public domain | W3C validator |