| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3020 opeldmg 4872 elreldm 4893 ssimaex 5625 resflem 5729 f1eqcocnv 5841 fliftfun 5846 isopolem 5872 isosolem 5874 brtposg 6321 issmo2 6356 nnmcl 6548 nnawordi 6582 nnmordi 6583 nnmord 6584 swoord1 6630 ecopovtrn 6700 ecopovtrng 6703 f1domg 6826 mapen 6916 mapxpen 6918 supmoti 7068 isotilem 7081 exmidomniim 7216 enq0tr 7518 prubl 7570 ltexprlemloc 7691 addextpr 7705 recexprlem1ssl 7717 recexprlem1ssu 7718 cauappcvgprlemdisj 7735 mulcmpblnr 7825 mulgt0sr 7862 map2psrprg 7889 ltleletr 8125 ltle 8131 ltadd2 8463 leltadd 8491 reapti 8623 apreap 8631 reapcotr 8642 apcotr 8651 addext 8654 mulext1 8656 zapne 9417 zextle 9434 prime 9442 uzin 9651 indstr 9684 supinfneg 9686 infsupneg 9687 ublbneg 9704 xrltle 9890 xrre2 9913 icc0r 10018 fzrevral 10197 flqge 10389 modqadd1 10470 modqmul1 10486 facdiv 10847 resqrexlemgt0 11202 abs00ap 11244 absext 11245 climshftlemg 11484 climcaucn 11533 dvds2lem 11985 dvdsfac 12042 ltoddhalfle 12075 ndvdsadd 12113 bitsinv1lem 12143 gcdaddm 12176 bezoutlembi 12197 gcdzeq 12214 algcvga 12244 rpdvds 12292 cncongr1 12296 cncongr2 12297 prmind2 12313 euclemma 12339 isprm6 12340 rpexp 12346 sqrt2irr 12355 odzdvds 12439 pclemub 12481 pceulem 12488 pc2dvds 12524 fldivp1 12542 infpnlem1 12553 prmunb 12556 issubg4m 13399 imasabl 13542 fiinbas 14369 bastg 14381 tgcl 14384 opnssneib 14476 tgcnp 14529 iscnp4 14538 cnntr 14545 cnptopresti 14558 lmss 14566 lmtopcnp 14570 txdis 14597 xblss2ps 14724 xblss2 14725 blsscls2 14813 metequiv2 14816 bdxmet 14821 mulc1cncf 14909 cncfco 14911 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 lgsdir 15360 lgsquadlem2 15403 2sqlem8a 15447 2sqlem10 15450 triap 15760 |
| Copyright terms: Public domain | W3C validator |