| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3039 opeldmg 4905 elreldm 4926 ssimaex 5668 resflem 5772 f1eqcocnv 5888 fliftfun 5893 isopolem 5919 isosolem 5921 brtposg 6370 issmo2 6405 nnmcl 6597 nnawordi 6631 nnmordi 6632 nnmord 6633 swoord1 6679 ecopovtrn 6749 ecopovtrng 6752 f1domg 6879 mapen 6975 mapxpen 6977 supmoti 7128 isotilem 7141 exmidomniim 7276 enq0tr 7589 prubl 7641 ltexprlemloc 7762 addextpr 7776 recexprlem1ssl 7788 recexprlem1ssu 7789 cauappcvgprlemdisj 7806 mulcmpblnr 7896 mulgt0sr 7933 map2psrprg 7960 ltleletr 8196 ltle 8202 ltadd2 8534 leltadd 8562 reapti 8694 apreap 8702 reapcotr 8713 apcotr 8722 addext 8725 mulext1 8727 zapne 9489 zextle 9506 prime 9514 uzin 9723 indstr 9756 supinfneg 9758 infsupneg 9759 ublbneg 9776 xrltle 9962 xrre2 9985 icc0r 10090 fzrevral 10269 flqge 10469 modqadd1 10550 modqmul1 10566 facdiv 10927 elfzelfzccat 11101 resqrexlemgt0 11497 abs00ap 11539 absext 11540 climshftlemg 11779 climcaucn 11828 dvds2lem 12280 dvdsfac 12337 ltoddhalfle 12370 ndvdsadd 12408 bitsinv1lem 12438 gcdaddm 12471 bezoutlembi 12492 gcdzeq 12509 algcvga 12539 rpdvds 12587 cncongr1 12591 cncongr2 12592 prmind2 12608 euclemma 12634 isprm6 12635 rpexp 12641 sqrt2irr 12650 odzdvds 12734 pclemub 12776 pceulem 12783 pc2dvds 12819 fldivp1 12837 infpnlem1 12848 prmunb 12851 issubg4m 13696 imasabl 13839 fiinbas 14688 bastg 14700 tgcl 14703 opnssneib 14795 tgcnp 14848 iscnp4 14857 cnntr 14864 cnptopresti 14877 lmss 14885 lmtopcnp 14889 txdis 14916 xblss2ps 15043 xblss2 15044 blsscls2 15132 metequiv2 15135 bdxmet 15140 mulc1cncf 15228 cncfco 15230 sincosq2sgn 15466 sincosq3sgn 15467 sincosq4sgn 15468 lgsdir 15679 lgsquadlem2 15722 2sqlem8a 15766 2sqlem10 15769 uspgrushgr 15943 uspgrupgr 15944 usgruspgr 15946 triap 16308 |
| Copyright terms: Public domain | W3C validator |