| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3059 opeldmg 4928 elreldm 4950 ssimaex 5697 resflem 5801 f1eqcocnv 5921 fliftfun 5926 isopolem 5952 isosolem 5954 brtposg 6406 issmo2 6441 nnmcl 6635 nnawordi 6669 nnmordi 6670 nnmord 6671 swoord1 6717 ecopovtrn 6787 ecopovtrng 6790 f1domg 6917 mapen 7015 mapxpen 7017 supmoti 7168 isotilem 7181 exmidomniim 7316 enq0tr 7629 prubl 7681 ltexprlemloc 7802 addextpr 7816 recexprlem1ssl 7828 recexprlem1ssu 7829 cauappcvgprlemdisj 7846 mulcmpblnr 7936 mulgt0sr 7973 map2psrprg 8000 ltleletr 8236 ltle 8242 ltadd2 8574 leltadd 8602 reapti 8734 apreap 8742 reapcotr 8753 apcotr 8762 addext 8765 mulext1 8767 zapne 9529 zextle 9546 prime 9554 uzin 9763 indstr 9796 supinfneg 9798 infsupneg 9799 ublbneg 9816 xrltle 10002 xrre2 10025 icc0r 10130 fzrevral 10309 flqge 10510 modqadd1 10591 modqmul1 10607 facdiv 10968 elfzelfzccat 11143 resqrexlemgt0 11539 abs00ap 11581 absext 11582 climshftlemg 11821 climcaucn 11870 dvds2lem 12322 dvdsfac 12379 ltoddhalfle 12412 ndvdsadd 12450 bitsinv1lem 12480 gcdaddm 12513 bezoutlembi 12534 gcdzeq 12551 algcvga 12581 rpdvds 12629 cncongr1 12633 cncongr2 12634 prmind2 12650 euclemma 12676 isprm6 12677 rpexp 12683 sqrt2irr 12692 odzdvds 12776 pclemub 12818 pceulem 12825 pc2dvds 12861 fldivp1 12879 infpnlem1 12890 prmunb 12893 issubg4m 13738 imasabl 13881 fiinbas 14731 bastg 14743 tgcl 14746 opnssneib 14838 tgcnp 14891 iscnp4 14900 cnntr 14907 cnptopresti 14920 lmss 14928 lmtopcnp 14932 txdis 14959 xblss2ps 15086 xblss2 15087 blsscls2 15175 metequiv2 15178 bdxmet 15183 mulc1cncf 15271 cncfco 15273 sincosq2sgn 15509 sincosq3sgn 15510 sincosq4sgn 15511 lgsdir 15722 lgsquadlem2 15765 2sqlem8a 15809 2sqlem10 15812 uspgrushgr 15986 uspgrupgr 15987 usgruspgr 15989 triap 16427 |
| Copyright terms: Public domain | W3C validator |