Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr4d 203 sbciegft 2991 opeldmg 4825 elreldm 4846 ssimaex 5569 resflem 5672 f1eqcocnv 5782 fliftfun 5787 isopolem 5813 isosolem 5815 brtposg 6245 issmo2 6280 nnmcl 6472 nnawordi 6506 nnmordi 6507 nnmord 6508 swoord1 6554 ecopovtrn 6622 ecopovtrng 6625 f1domg 6748 mapen 6836 mapxpen 6838 supmoti 6982 isotilem 6995 exmidomniim 7129 enq0tr 7408 prubl 7460 ltexprlemloc 7581 addextpr 7595 recexprlem1ssl 7607 recexprlem1ssu 7608 cauappcvgprlemdisj 7625 mulcmpblnr 7715 mulgt0sr 7752 map2psrprg 7779 ltleletr 8013 ltle 8019 ltadd2 8350 leltadd 8378 reapti 8510 apreap 8518 reapcotr 8529 apcotr 8538 addext 8541 mulext1 8543 zapne 9298 zextle 9315 prime 9323 uzin 9531 indstr 9564 supinfneg 9566 infsupneg 9567 ublbneg 9584 xrltle 9767 xrre2 9790 icc0r 9895 fzrevral 10073 flqge 10250 modqadd1 10329 modqmul1 10345 facdiv 10684 resqrexlemgt0 10995 abs00ap 11037 absext 11038 climshftlemg 11276 climcaucn 11325 dvds2lem 11776 dvdsfac 11831 ltoddhalfle 11863 ndvdsadd 11901 gcdaddm 11950 bezoutlembi 11971 gcdzeq 11988 algcvga 12016 rpdvds 12064 cncongr1 12068 cncongr2 12069 prmind2 12085 euclemma 12111 isprm6 12112 rpexp 12118 sqrt2irr 12127 odzdvds 12210 pclemub 12252 pceulem 12259 pc2dvds 12294 fldivp1 12311 infpnlem1 12322 prmunb 12325 fiinbas 13098 bastg 13112 tgcl 13115 opnssneib 13207 tgcnp 13260 iscnp4 13269 cnntr 13276 cnptopresti 13289 lmss 13297 lmtopcnp 13301 txdis 13328 xblss2ps 13455 xblss2 13456 blsscls2 13544 metequiv2 13547 bdxmet 13552 mulc1cncf 13627 cncfco 13629 sincosq2sgn 13799 sincosq3sgn 13800 sincosq4sgn 13801 lgsdir 13987 2sqlem8a 14009 2sqlem10 14012 triap 14318 |
Copyright terms: Public domain | W3C validator |