![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylibrd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibrd.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
sylibrd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibrd.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr4d 203 sbciegft 3017 opeldmg 4868 elreldm 4889 ssimaex 5619 resflem 5723 f1eqcocnv 5835 fliftfun 5840 isopolem 5866 isosolem 5868 brtposg 6309 issmo2 6344 nnmcl 6536 nnawordi 6570 nnmordi 6571 nnmord 6572 swoord1 6618 ecopovtrn 6688 ecopovtrng 6691 f1domg 6814 mapen 6904 mapxpen 6906 supmoti 7054 isotilem 7067 exmidomniim 7202 enq0tr 7496 prubl 7548 ltexprlemloc 7669 addextpr 7683 recexprlem1ssl 7695 recexprlem1ssu 7696 cauappcvgprlemdisj 7713 mulcmpblnr 7803 mulgt0sr 7840 map2psrprg 7867 ltleletr 8103 ltle 8109 ltadd2 8440 leltadd 8468 reapti 8600 apreap 8608 reapcotr 8619 apcotr 8628 addext 8631 mulext1 8633 zapne 9394 zextle 9411 prime 9419 uzin 9628 indstr 9661 supinfneg 9663 infsupneg 9664 ublbneg 9681 xrltle 9867 xrre2 9890 icc0r 9995 fzrevral 10174 flqge 10354 modqadd1 10435 modqmul1 10451 facdiv 10812 resqrexlemgt0 11167 abs00ap 11209 absext 11210 climshftlemg 11448 climcaucn 11497 dvds2lem 11949 dvdsfac 12005 ltoddhalfle 12037 ndvdsadd 12075 gcdaddm 12124 bezoutlembi 12145 gcdzeq 12162 algcvga 12192 rpdvds 12240 cncongr1 12244 cncongr2 12245 prmind2 12261 euclemma 12287 isprm6 12288 rpexp 12294 sqrt2irr 12303 odzdvds 12386 pclemub 12428 pceulem 12435 pc2dvds 12471 fldivp1 12489 infpnlem1 12500 prmunb 12503 issubg4m 13266 imasabl 13409 fiinbas 14228 bastg 14240 tgcl 14243 opnssneib 14335 tgcnp 14388 iscnp4 14397 cnntr 14404 cnptopresti 14417 lmss 14425 lmtopcnp 14429 txdis 14456 xblss2ps 14583 xblss2 14584 blsscls2 14672 metequiv2 14675 bdxmet 14680 mulc1cncf 14768 cncfco 14770 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 lgsdir 15192 lgsquadlem2 15235 2sqlem8a 15279 2sqlem10 15282 triap 15589 |
Copyright terms: Public domain | W3C validator |