![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infpwfidom | GIF version |
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
infpwfidom | ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwi 4212 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
2 | snfig 6813 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ Fin) | |
3 | 1, 2 | elind 3320 | . 2 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ (𝒫 𝐴 ∩ Fin)) |
4 | sneqbg 3763 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
5 | 4 | adantr 276 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
6 | 3, 5 | dom2 6774 | 1 ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ∩ cin 3128 𝒫 cpw 3575 {csn 3592 class class class wbr 4003 ≼ cdom 6738 Fincfn 6739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-1o 6416 df-en 6740 df-dom 6741 df-fin 6742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |