ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpwfidom GIF version

Theorem infpwfidom 6768
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
infpwfidom ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))

Proof of Theorem infpwfidom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snelpwi 4013 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
2 snfig 6483 . . 3 (𝑥𝐴 → {𝑥} ∈ Fin)
31, 2elind 3174 . 2 (𝑥𝐴 → {𝑥} ∈ (𝒫 𝐴 ∩ Fin))
4 sneqbg 3590 . . 3 (𝑥𝐴 → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
54adantr 270 . 2 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
63, 5dom2 6444 1 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1287  wcel 1436  Vcvv 2615  cin 2987  𝒫 cpw 3415  {csn 3431   class class class wbr 3820  cdom 6408  Fincfn 6409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-1o 6135  df-en 6410  df-dom 6411  df-fin 6412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator