Step | Hyp | Ref
| Expression |
1 | | fsumcvg3.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
2 | | fsumcvg3.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | uzssz 9485 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
4 | | zssre 9198 |
. . . . . . 7
⊢ ℤ
⊆ ℝ |
5 | 3, 4 | sstri 3151 |
. . . . . 6
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
6 | 2, 5 | eqsstri 3174 |
. . . . 5
⊢ 𝑍 ⊆
ℝ |
7 | 1, 6 | sstrdi 3154 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
8 | | fsumcvg3.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | | fimaxre2 11168 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
10 | 7, 8, 9 | syl2anc 409 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
11 | | arch 9111 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
∃𝑚 ∈ ℕ
𝑥 < 𝑚) |
12 | 11 | ad2antrl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) → ∃𝑚 ∈ ℕ 𝑥 < 𝑚) |
13 | | fsumcvg3.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | 13 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℤ) |
15 | | simprl 521 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℕ) |
16 | 15 | nnzd 9312 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℤ) |
17 | | zmaxcl 11166 |
. . . . . . 7
⊢ ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
sup({𝑚, 𝑀}, ℝ, < ) ∈
ℤ) |
18 | 16, 14, 17 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈
ℤ) |
19 | 15 | nnred 8870 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℝ) |
20 | 14 | zred 9313 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℝ) |
21 | | maxle2 11154 |
. . . . . . 7
⊢ ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )) |
22 | 19, 20, 21 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )) |
23 | | eluz2 9472 |
. . . . . 6
⊢
(sup({𝑚, 𝑀}, ℝ, < ) ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧
𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))) |
24 | 14, 18, 22, 23 | syl3anbrc 1171 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈
(ℤ≥‘𝑀)) |
25 | 14 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑀 ∈ ℤ) |
26 | 18 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈
ℤ) |
27 | 1, 2 | sseqtrdi 3190 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
28 | 27 | ad3antrrr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
29 | 28, 3 | sstrdi 3154 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
30 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
31 | 29, 30 | sseldd 3143 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℤ) |
32 | 25, 26, 31 | 3jca 1167 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧
𝑧 ∈
ℤ)) |
33 | 27 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
34 | 33 | sselda 3142 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (ℤ≥‘𝑀)) |
35 | | eluzle 9478 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑧) |
36 | 34, 35 | syl 14 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑀 ≤ 𝑧) |
37 | 31 | zred 9313 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
38 | 19 | adantr 274 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑚 ∈ ℝ) |
39 | 26 | zred 9313 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈
ℝ) |
40 | | simprl 521 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
41 | 40 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ ℝ) |
42 | | breq1 3985 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑥 ↔ 𝑧 ≤ 𝑥)) |
43 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
44 | 43 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
45 | 42, 44, 30 | rspcdva 2835 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝑥) |
46 | | simplrr 526 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑥 < 𝑚) |
47 | 41, 38, 46 | ltled 8017 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ≤ 𝑚) |
48 | 37, 41, 38, 45, 47 | letrd 8022 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝑚) |
49 | 20 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑀 ∈ ℝ) |
50 | | maxle1 11153 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < )) |
51 | 38, 49, 50 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < )) |
52 | 37, 38, 39, 48, 51 | letrd 8022 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )) |
53 | 36, 52 | jca 304 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → (𝑀 ≤ 𝑧 ∧ 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))) |
54 | | elfz2 9951 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧
𝑧 ∈ ℤ) ∧
(𝑀 ≤ 𝑧 ∧ 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )))) |
55 | 32, 53, 54 | sylanbrc 414 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) |
56 | 55 | ex 114 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → (𝑧 ∈ 𝐴 → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))) |
57 | 56 | ssrdv 3148 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) |
58 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) |
59 | 58 | sseq2d 3172 |
. . . . . 6
⊢ (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))) |
60 | 59 | rspcev 2830 |
. . . . 5
⊢
((sup({𝑚, 𝑀}, ℝ, < ) ∈
(ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) → ∃𝑛 ∈
(ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
61 | 24, 57, 60 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → ∃𝑛 ∈ (ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
62 | 12, 61 | rexlimddv 2588 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) → ∃𝑛 ∈ (ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
63 | 10, 62 | rexlimddv 2588 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)𝐴 ⊆ (𝑀...𝑛)) |
64 | 2 | eleq2i 2233 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
65 | | fsumcvg3.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
66 | 64, 65 | sylan2br 286 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
67 | 66 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
68 | | simprl 521 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
69 | | fsumcvg3.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
70 | 69 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
71 | | fisumcvg3.dc |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
72 | 71 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
73 | | simprr 522 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛)) |
74 | 67, 68, 70, 72, 73 | fsum3cvg2 11335 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛)) |
75 | | climrel 11221 |
. . . 4
⊢ Rel
⇝ |
76 | 75 | releldmi 4843 |
. . 3
⊢ (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
77 | 74, 76 | syl 14 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
78 | 63, 77 | rexlimddv 2588 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |