ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 GIF version

Theorem fsum3cvg3 10850
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fisumcvg3.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsum3cvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsum3cvg3
Dummy variables 𝑛 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5 (𝜑𝐴𝑍)
2 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 uzssz 9099 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
4 zssre 8818 . . . . . . 7 ℤ ⊆ ℝ
53, 4sstri 3035 . . . . . 6 (ℤ𝑀) ⊆ ℝ
62, 5eqsstri 3057 . . . . 5 𝑍 ⊆ ℝ
71, 6syl6ss 3038 . . . 4 (𝜑𝐴 ⊆ ℝ)
8 fsumcvg3.3 . . . 4 (𝜑𝐴 ∈ Fin)
9 fimaxre2 10719 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
107, 8, 9syl2anc 404 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
11 arch 8731 . . . . 5 (𝑥 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
1211ad2antrl 475 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
13 fsumcvg3.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 473 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℤ)
15 simprl 499 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℕ)
1615nnzd 8928 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℤ)
17 zmaxcl 10717 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1816, 14, 17syl2anc 404 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1915nnred 8496 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℝ)
2014zred 8929 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℝ)
21 maxle2 10706 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
2219, 20, 21syl2anc 404 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
23 eluz2 9086 . . . . . 6 (sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )))
2414, 18, 22, 23syl3anbrc 1128 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀))
2514adantr 271 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℤ)
2618adantr 271 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
271, 2syl6sseq 3073 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2827ad3antrrr 477 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ (ℤ𝑀))
2928, 3syl6ss 3038 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ ℤ)
30 simpr 109 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝐴)
3129, 30sseldd 3027 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
3225, 26, 313jca 1124 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3327ad2antrr 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (ℤ𝑀))
3433sselda 3026 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (ℤ𝑀))
35 eluzle 9092 . . . . . . . . . 10 (𝑧 ∈ (ℤ𝑀) → 𝑀𝑧)
3634, 35syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀𝑧)
3731zred 8929 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
3819adantr 271 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ∈ ℝ)
3926zred 8929 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℝ)
40 simprl 499 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → 𝑥 ∈ ℝ)
4140ad2antrr 473 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 ∈ ℝ)
42 breq1 3854 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
43 simprr 500 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∀𝑦𝐴 𝑦𝑥)
4443ad2antrr 473 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑥)
4542, 44, 30rspcdva 2728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑥)
46 simplrr 504 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 < 𝑚)
4741, 38, 46ltled 7663 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥𝑚)
4837, 41, 38, 45, 47letrd 7668 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑚)
4920adantr 271 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℝ)
50 maxle1 10705 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5138, 49, 50syl2anc 404 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5237, 38, 39, 48, 51letrd 7668 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5336, 52jca 301 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )))
54 elfz2 9492 . . . . . . . 8 (𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))))
5532, 53, 54sylanbrc 409 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5655ex 114 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → (𝑧𝐴𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
5756ssrdv 3032 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
58 oveq2 5674 . . . . . . 7 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5958sseq2d 3055 . . . . . 6 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
6059rspcev 2723 . . . . 5 ((sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6124, 57, 60syl2anc 404 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6212, 61rexlimddv 2494 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6310, 62rexlimddv 2494 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
642eleq2i 2155 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
65 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6664, 65sylan2br 283 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6766adantlr 462 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
68 simprl 499 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
69 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
7069adantlr 462 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
71 fisumcvg3.dc . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
7271adantlr 462 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
73 simprr 500 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
7467, 68, 70, 72, 73fsum3cvg2 10848 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
75 climrel 10729 . . . 4 Rel ⇝
7675releldmi 4687 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7774, 76syl 14 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7863, 77rexlimddv 2494 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 781  w3a 925   = wceq 1290  wcel 1439  wral 2360  wrex 2361  wss 3000  ifcif 3397  {cpr 3451   class class class wbr 3851  dom cdm 4452  cfv 5028  (class class class)co 5666  Fincfn 6511  supcsup 6731  cc 7409  cr 7410  0cc0 7411   + caddc 7414   < clt 7583  cle 7584  cn 8483  cz 8811  cuz 9080  ...cfz 9485  seqcseq 9913  cli 10727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-er 6306  df-en 6512  df-fin 6514  df-sup 6733  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-fz 9486  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728
This theorem is referenced by:  isumlessdc  10951
  Copyright terms: Public domain W3C validator