ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 GIF version

Theorem fsum3cvg3 11439
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fisumcvg3.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsum3cvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsum3cvg3
Dummy variables 𝑛 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5 (𝜑𝐴𝑍)
2 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 uzssz 9579 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
4 zssre 9291 . . . . . . 7 ℤ ⊆ ℝ
53, 4sstri 3179 . . . . . 6 (ℤ𝑀) ⊆ ℝ
62, 5eqsstri 3202 . . . . 5 𝑍 ⊆ ℝ
71, 6sstrdi 3182 . . . 4 (𝜑𝐴 ⊆ ℝ)
8 fsumcvg3.3 . . . 4 (𝜑𝐴 ∈ Fin)
9 fimaxre2 11270 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
107, 8, 9syl2anc 411 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
11 arch 9204 . . . . 5 (𝑥 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
1211ad2antrl 490 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
13 fsumcvg3.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℤ)
15 simprl 529 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℕ)
1615nnzd 9405 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℤ)
17 zmaxcl 11268 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1816, 14, 17syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1915nnred 8963 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℝ)
2014zred 9406 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℝ)
21 maxle2 11256 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
2219, 20, 21syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
23 eluz2 9565 . . . . . 6 (sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )))
2414, 18, 22, 23syl3anbrc 1183 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀))
2514adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℤ)
2618adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
271, 2sseqtrdi 3218 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2827ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ (ℤ𝑀))
2928, 3sstrdi 3182 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ ℤ)
30 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝐴)
3129, 30sseldd 3171 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
3225, 26, 313jca 1179 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3327ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (ℤ𝑀))
3433sselda 3170 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (ℤ𝑀))
35 eluzle 9571 . . . . . . . . . 10 (𝑧 ∈ (ℤ𝑀) → 𝑀𝑧)
3634, 35syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀𝑧)
3731zred 9406 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
3819adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ∈ ℝ)
3926zred 9406 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℝ)
40 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → 𝑥 ∈ ℝ)
4140ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 ∈ ℝ)
42 breq1 4021 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
43 simprr 531 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∀𝑦𝐴 𝑦𝑥)
4443ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑥)
4542, 44, 30rspcdva 2861 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑥)
46 simplrr 536 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 < 𝑚)
4741, 38, 46ltled 8107 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥𝑚)
4837, 41, 38, 45, 47letrd 8112 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑚)
4920adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℝ)
50 maxle1 11255 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5138, 49, 50syl2anc 411 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5237, 38, 39, 48, 51letrd 8112 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5336, 52jca 306 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )))
54 elfz2 10047 . . . . . . . 8 (𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))))
5532, 53, 54sylanbrc 417 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5655ex 115 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → (𝑧𝐴𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
5756ssrdv 3176 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
58 oveq2 5905 . . . . . . 7 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5958sseq2d 3200 . . . . . 6 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
6059rspcev 2856 . . . . 5 ((sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6124, 57, 60syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6212, 61rexlimddv 2612 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6310, 62rexlimddv 2612 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
642eleq2i 2256 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
65 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6664, 65sylan2br 288 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6766adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
68 simprl 529 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
69 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
7069adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
71 fisumcvg3.dc . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
7271adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
73 simprr 531 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
7467, 68, 70, 72, 73fsum3cvg2 11437 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
75 climrel 11323 . . . 4 Rel ⇝
7675releldmi 4884 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7774, 76syl 14 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7863, 77rexlimddv 2612 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  wral 2468  wrex 2469  wss 3144  ifcif 3549  {cpr 3608   class class class wbr 4018  dom cdm 4644  cfv 5235  (class class class)co 5897  Fincfn 6767  supcsup 7012  cc 7840  cr 7841  0cc0 7842   + caddc 7845   < clt 8023  cle 8024  cn 8950  cz 9284  cuz 9559  ...cfz 10040  seqcseq 10478  cli 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-er 6560  df-en 6768  df-fin 6770  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-rp 9686  df-fz 10041  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322
This theorem is referenced by:  isumlessdc  11539
  Copyright terms: Public domain W3C validator