ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg3 GIF version

Theorem fsum3cvg3 11740
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fisumcvg3.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsum3cvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsum3cvg3
Dummy variables 𝑛 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5 (𝜑𝐴𝑍)
2 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 uzssz 9670 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
4 zssre 9381 . . . . . . 7 ℤ ⊆ ℝ
53, 4sstri 3202 . . . . . 6 (ℤ𝑀) ⊆ ℝ
62, 5eqsstri 3225 . . . . 5 𝑍 ⊆ ℝ
71, 6sstrdi 3205 . . . 4 (𝜑𝐴 ⊆ ℝ)
8 fsumcvg3.3 . . . 4 (𝜑𝐴 ∈ Fin)
9 fimaxre2 11571 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
107, 8, 9syl2anc 411 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
11 arch 9294 . . . . 5 (𝑥 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
1211ad2antrl 490 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
13 fsumcvg3.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℤ)
15 simprl 529 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℕ)
1615nnzd 9496 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℤ)
17 zmaxcl 11568 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1816, 14, 17syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1915nnred 9051 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℝ)
2014zred 9497 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℝ)
21 maxle2 11556 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
2219, 20, 21syl2anc 411 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
23 eluz2 9656 . . . . . 6 (sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )))
2414, 18, 22, 23syl3anbrc 1184 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀))
2514adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℤ)
2618adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
271, 2sseqtrdi 3241 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2827ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ (ℤ𝑀))
2928, 3sstrdi 3205 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ ℤ)
30 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝐴)
3129, 30sseldd 3194 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
3225, 26, 313jca 1180 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3327ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (ℤ𝑀))
3433sselda 3193 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (ℤ𝑀))
35 eluzle 9662 . . . . . . . . . 10 (𝑧 ∈ (ℤ𝑀) → 𝑀𝑧)
3634, 35syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀𝑧)
3731zred 9497 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
3819adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ∈ ℝ)
3926zred 9497 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℝ)
40 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → 𝑥 ∈ ℝ)
4140ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 ∈ ℝ)
42 breq1 4048 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
43 simprr 531 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∀𝑦𝐴 𝑦𝑥)
4443ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑥)
4542, 44, 30rspcdva 2882 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑥)
46 simplrr 536 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 < 𝑚)
4741, 38, 46ltled 8193 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥𝑚)
4837, 41, 38, 45, 47letrd 8198 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑚)
4920adantr 276 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℝ)
50 maxle1 11555 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5138, 49, 50syl2anc 411 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5237, 38, 39, 48, 51letrd 8198 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5336, 52jca 306 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )))
54 elfz2 10139 . . . . . . . 8 (𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))))
5532, 53, 54sylanbrc 417 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5655ex 115 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → (𝑧𝐴𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
5756ssrdv 3199 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
58 oveq2 5954 . . . . . . 7 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5958sseq2d 3223 . . . . . 6 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
6059rspcev 2877 . . . . 5 ((sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6124, 57, 60syl2anc 411 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6212, 61rexlimddv 2628 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6310, 62rexlimddv 2628 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
642eleq2i 2272 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
65 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6664, 65sylan2br 288 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6766adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
68 simprl 529 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
69 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
7069adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
71 fisumcvg3.dc . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
7271adantlr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
73 simprr 531 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
7467, 68, 70, 72, 73fsum3cvg2 11738 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
75 climrel 11624 . . . 4 Rel ⇝
7675releldmi 4918 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7774, 76syl 14 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
7863, 77rexlimddv 2628 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wcel 2176  wral 2484  wrex 2485  wss 3166  ifcif 3571  {cpr 3634   class class class wbr 4045  dom cdm 4676  cfv 5272  (class class class)co 5946  Fincfn 6829  supcsup 7086  cc 7925  cr 7926  0cc0 7927   + caddc 7930   < clt 8109  cle 8110  cn 9038  cz 9374  cuz 9650  ...cfz 10132  seqcseq 10594  cli 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-er 6622  df-en 6830  df-fin 6832  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-fz 10133  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623
This theorem is referenced by:  isumlessdc  11840
  Copyright terms: Public domain W3C validator