ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon GIF version

Theorem iunon 6287
Description: The indexed union of a set of ordinal numbers 𝐡(π‘₯) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ On)
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   𝐡(π‘₯)   𝑉(π‘₯)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4886 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐡))
21adantl 277 . 2 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐡))
3 mptexg 5743 . . . 4 (𝐴 ∈ 𝑉 β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V)
4 rnexg 4894 . . . 4 ((π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V)
53, 4syl 14 . . 3 (𝐴 ∈ 𝑉 β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V)
6 eqid 2177 . . . . 5 (π‘₯ ∈ 𝐴 ↦ 𝐡) = (π‘₯ ∈ 𝐴 ↦ 𝐡)
76fmpt 5668 . . . 4 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On ↔ (π‘₯ ∈ 𝐴 ↦ 𝐡):𝐴⟢On)
8 frn 5376 . . . 4 ((π‘₯ ∈ 𝐴 ↦ 𝐡):𝐴⟢On β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) βŠ† On)
97, 8sylbi 121 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) βŠ† On)
10 ssonuni 4489 . . . 4 (ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V β†’ (ran (π‘₯ ∈ 𝐴 ↦ 𝐡) βŠ† On β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ On))
1110imp 124 . . 3 ((ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V ∧ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) βŠ† On) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ On)
125, 9, 11syl2an 289 . 2 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ On)
132, 12eqeltrd 2254 1 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ On)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2739   βŠ† wss 3131  βˆͺ cuni 3811  βˆͺ ciun 3888   ↦ cmpt 4066  Oncon0 4365  ran crn 4629  βŸΆwf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  rdgon  6389
  Copyright terms: Public domain W3C validator