![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunon | GIF version |
Description: The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iunon | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 4722 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | adantl 272 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
3 | mptexg 5561 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
4 | rnexg 4730 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
6 | eqid 2095 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fmpt 5488 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶On) |
8 | frn 5204 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) | |
9 | 7, 8 | sylbi 120 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
10 | ssonuni 4333 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On)) | |
11 | 10 | imp 123 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
12 | 5, 9, 11 | syl2an 284 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
13 | 2, 12 | eqeltrd 2171 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∀wral 2370 Vcvv 2633 ⊆ wss 3013 ∪ cuni 3675 ∪ ciun 3752 ↦ cmpt 3921 Oncon0 4214 ran crn 4468 ⟶wf 5045 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 |
This theorem is referenced by: rdgon 6189 |
Copyright terms: Public domain | W3C validator |