| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunon | GIF version | ||
| Description: The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| iunon | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun3g 4980 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 3 | mptexg 5863 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 4 | rnexg 4988 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 6 | eqid 2229 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 7 | 6 | fmpt 5784 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶On) |
| 8 | frn 5481 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) | |
| 9 | 7, 8 | sylbi 121 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ On → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) |
| 10 | ssonuni 4579 | . . . 4 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On)) | |
| 11 | 10 | imp 124 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ On) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
| 12 | 5, 9, 11 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ On) |
| 13 | 2, 12 | eqeltrd 2306 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3887 ∪ ciun 3964 ↦ cmpt 4144 Oncon0 4453 ran crn 4719 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 |
| This theorem is referenced by: rdgon 6530 |
| Copyright terms: Public domain | W3C validator |