ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon GIF version

Theorem iunon 6370
Description: The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4935 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantl 277 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 mptexg 5809 . . . 4 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
4 rnexg 4943 . . . 4 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
53, 4syl 14 . . 3 (𝐴𝑉 → ran (𝑥𝐴𝐵) ∈ V)
6 eqid 2205 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fmpt 5730 . . . 4 (∀𝑥𝐴 𝐵 ∈ On ↔ (𝑥𝐴𝐵):𝐴⟶On)
8 frn 5434 . . . 4 ((𝑥𝐴𝐵):𝐴⟶On → ran (𝑥𝐴𝐵) ⊆ On)
97, 8sylbi 121 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
10 ssonuni 4536 . . . 4 (ran (𝑥𝐴𝐵) ∈ V → (ran (𝑥𝐴𝐵) ⊆ On → ran (𝑥𝐴𝐵) ∈ On))
1110imp 124 . . 3 ((ran (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ⊆ On) → ran (𝑥𝐴𝐵) ∈ On)
125, 9, 11syl2an 289 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → ran (𝑥𝐴𝐵) ∈ On)
132, 12eqeltrd 2282 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  wss 3166   cuni 3850   ciun 3927  cmpt 4105  Oncon0 4410  ran crn 4676  wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  rdgon  6472
  Copyright terms: Public domain W3C validator