![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunon | GIF version |
Description: The indexed union of a set of ordinal numbers π΅(π₯) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
iunon | β’ ((π΄ β π β§ βπ₯ β π΄ π΅ β On) β βͺ π₯ β π΄ π΅ β On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun3g 4886 | . . 3 β’ (βπ₯ β π΄ π΅ β On β βͺ π₯ β π΄ π΅ = βͺ ran (π₯ β π΄ β¦ π΅)) | |
2 | 1 | adantl 277 | . 2 β’ ((π΄ β π β§ βπ₯ β π΄ π΅ β On) β βͺ π₯ β π΄ π΅ = βͺ ran (π₯ β π΄ β¦ π΅)) |
3 | mptexg 5743 | . . . 4 β’ (π΄ β π β (π₯ β π΄ β¦ π΅) β V) | |
4 | rnexg 4894 | . . . 4 β’ ((π₯ β π΄ β¦ π΅) β V β ran (π₯ β π΄ β¦ π΅) β V) | |
5 | 3, 4 | syl 14 | . . 3 β’ (π΄ β π β ran (π₯ β π΄ β¦ π΅) β V) |
6 | eqid 2177 | . . . . 5 β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) | |
7 | 6 | fmpt 5668 | . . . 4 β’ (βπ₯ β π΄ π΅ β On β (π₯ β π΄ β¦ π΅):π΄βΆOn) |
8 | frn 5376 | . . . 4 β’ ((π₯ β π΄ β¦ π΅):π΄βΆOn β ran (π₯ β π΄ β¦ π΅) β On) | |
9 | 7, 8 | sylbi 121 | . . 3 β’ (βπ₯ β π΄ π΅ β On β ran (π₯ β π΄ β¦ π΅) β On) |
10 | ssonuni 4489 | . . . 4 β’ (ran (π₯ β π΄ β¦ π΅) β V β (ran (π₯ β π΄ β¦ π΅) β On β βͺ ran (π₯ β π΄ β¦ π΅) β On)) | |
11 | 10 | imp 124 | . . 3 β’ ((ran (π₯ β π΄ β¦ π΅) β V β§ ran (π₯ β π΄ β¦ π΅) β On) β βͺ ran (π₯ β π΄ β¦ π΅) β On) |
12 | 5, 9, 11 | syl2an 289 | . 2 β’ ((π΄ β π β§ βπ₯ β π΄ π΅ β On) β βͺ ran (π₯ β π΄ β¦ π΅) β On) |
13 | 2, 12 | eqeltrd 2254 | 1 β’ ((π΄ β π β§ βπ₯ β π΄ π΅ β On) β βͺ π₯ β π΄ π΅ β On) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βwral 2455 Vcvv 2739 β wss 3131 βͺ cuni 3811 βͺ ciun 3888 β¦ cmpt 4066 Oncon0 4365 ran crn 4629 βΆwf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 |
This theorem is referenced by: rdgon 6389 |
Copyright terms: Public domain | W3C validator |