ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss GIF version

Theorem tgss 14020
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))

Proof of Theorem tgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrin 3375 . . . . . 6 (𝐵𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
21unissd 3848 . . . . 5 (𝐵𝐶 (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
3 sstr2 3177 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
42, 3syl5com 29 . . . 4 (𝐵𝐶 → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
54adantl 277 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
6 ssexg 4157 . . . . 5 ((𝐵𝐶𝐶𝑉) → 𝐵 ∈ V)
76ancoms 268 . . . 4 ((𝐶𝑉𝐵𝐶) → 𝐵 ∈ V)
8 eltg 14009 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
97, 8syl 14 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
10 eltg 14009 . . . 4 (𝐶𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
1110adantr 276 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
125, 9, 113imtr4d 203 . 2 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶)))
1312ssrdv 3176 1 ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  Vcvv 2752  cin 3143  wss 3144  𝒫 cpw 3590   cuni 3824  cfv 5235  topGenctg 12759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-topgen 12765
This theorem is referenced by:  tgidm  14031  tgss3  14035  basgen  14037  2basgeng  14039  bastop1  14040  txss12  14223
  Copyright terms: Public domain W3C validator