ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss GIF version

Theorem tgss 12822
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))

Proof of Theorem tgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrin 3352 . . . . . 6 (𝐵𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
21unissd 3818 . . . . 5 (𝐵𝐶 (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
3 sstr2 3154 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
42, 3syl5com 29 . . . 4 (𝐵𝐶 → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
54adantl 275 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
6 ssexg 4126 . . . . 5 ((𝐵𝐶𝐶𝑉) → 𝐵 ∈ V)
76ancoms 266 . . . 4 ((𝐶𝑉𝐵𝐶) → 𝐵 ∈ V)
8 eltg 12811 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
97, 8syl 14 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
10 eltg 12811 . . . 4 (𝐶𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
1110adantr 274 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
125, 9, 113imtr4d 202 . 2 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶)))
1312ssrdv 3153 1 ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  Vcvv 2730  cin 3120  wss 3121  𝒫 cpw 3564   cuni 3794  cfv 5196  topGenctg 12587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-topgen 12593
This theorem is referenced by:  tgidm  12833  tgss3  12837  basgen  12839  2basgeng  12841  bastop1  12842  txss12  13025
  Copyright terms: Public domain W3C validator