![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgss | GIF version |
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
Ref | Expression |
---|---|
tgss | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3375 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥)) | |
2 | 1 | unissd 3848 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥)) |
3 | sstr2 3177 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
4 | 2, 3 | syl5com 29 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
5 | 4 | adantl 277 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
6 | ssexg 4157 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ V) | |
7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ∈ V) |
8 | eltg 14009 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
10 | eltg 14009 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
12 | 5, 9, 11 | 3imtr4d 203 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶))) |
13 | 12 | ssrdv 3176 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 Vcvv 2752 ∩ cin 3143 ⊆ wss 3144 𝒫 cpw 3590 ∪ cuni 3824 ‘cfv 5235 topGenctg 12759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-topgen 12765 |
This theorem is referenced by: tgidm 14031 tgss3 14035 basgen 14037 2basgeng 14039 bastop1 14040 txss12 14223 |
Copyright terms: Public domain | W3C validator |