![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgss | GIF version |
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
Ref | Expression |
---|---|
tgss | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3384 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥)) | |
2 | 1 | unissd 3859 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥)) |
3 | sstr2 3186 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
4 | 2, 3 | syl5com 29 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
5 | 4 | adantl 277 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
6 | ssexg 4168 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ V) | |
7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ∈ V) |
8 | eltg 14220 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
10 | eltg 14220 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
12 | 5, 9, 11 | 3imtr4d 203 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶))) |
13 | 12 | ssrdv 3185 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ‘cfv 5254 topGenctg 12865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topgen 12871 |
This theorem is referenced by: tgidm 14242 tgss3 14246 basgen 14248 2basgeng 14250 bastop1 14251 txss12 14434 |
Copyright terms: Public domain | W3C validator |