ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss GIF version

Theorem tgss 14453
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))

Proof of Theorem tgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrin 3397 . . . . . 6 (𝐵𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
21unissd 3873 . . . . 5 (𝐵𝐶 (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥))
3 sstr2 3199 . . . . 5 (𝑥 (𝐵 ∩ 𝒫 𝑥) → ( (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
42, 3syl5com 29 . . . 4 (𝐵𝐶 → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
54adantl 277 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐶 ∩ 𝒫 𝑥)))
6 ssexg 4182 . . . . 5 ((𝐵𝐶𝐶𝑉) → 𝐵 ∈ V)
76ancoms 268 . . . 4 ((𝐶𝑉𝐵𝐶) → 𝐵 ∈ V)
8 eltg 14442 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
97, 8syl 14 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
10 eltg 14442 . . . 4 (𝐶𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
1110adantr 276 . . 3 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 (𝐶 ∩ 𝒫 𝑥)))
125, 9, 113imtr4d 203 . 2 ((𝐶𝑉𝐵𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶)))
1312ssrdv 3198 1 ((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2175  Vcvv 2771  cin 3164  wss 3165  𝒫 cpw 3615   cuni 3849  cfv 5268  topGenctg 13004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-topgen 13010
This theorem is referenced by:  tgidm  14464  tgss3  14468  basgen  14470  2basgeng  14472  bastop1  14473  txss12  14656
  Copyright terms: Public domain W3C validator