Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgss | GIF version |
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
Ref | Expression |
---|---|
tgss | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3352 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝒫 𝑥) ⊆ (𝐶 ∩ 𝒫 𝑥)) | |
2 | 1 | unissd 3818 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → ∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥)) |
3 | sstr2 3154 | . . . . 5 ⊢ (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → (∪ (𝐵 ∩ 𝒫 𝑥) ⊆ ∪ (𝐶 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
4 | 2, 3 | syl5com 29 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
5 | 4 | adantl 275 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
6 | ssexg 4126 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ V) | |
7 | 6 | ancoms 266 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ∈ V) |
8 | eltg 12811 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
10 | eltg 12811 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) | |
11 | 10 | adantr 274 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐶) ↔ 𝑥 ⊆ ∪ (𝐶 ∩ 𝒫 𝑥))) |
12 | 5, 9, 11 | 3imtr4d 202 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ (topGen‘𝐶))) |
13 | 12 | ssrdv 3153 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 𝒫 cpw 3564 ∪ cuni 3794 ‘cfv 5196 topGenctg 12587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-topgen 12593 |
This theorem is referenced by: tgidm 12833 tgss3 12837 basgen 12839 2basgeng 12841 bastop1 12842 txss12 13025 |
Copyright terms: Public domain | W3C validator |