ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss GIF version

Theorem fiss 6942
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 sspwb 4194 . . . . 5 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
3 ssrin 3347 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
42, 3sylbi 120 . . . 4 (𝐴𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
5 ssrexv 3207 . . . 4 ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
61, 4, 53syl 17 . . 3 ((𝐵𝑉𝐴𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
7 vex 2729 . . . 4 𝑟 ∈ V
8 simpl 108 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐵𝑉)
98, 1ssexd 4122 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
10 elfi 6936 . . . 4 ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
117, 9, 10sylancr 411 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
12 elfi 6936 . . . . 5 ((𝑟 ∈ V ∧ 𝐵𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
137, 12mpan 421 . . . 4 (𝐵𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
1413adantr 274 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
156, 11, 143imtr4d 202 . 2 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵)))
1615ssrdv 3148 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  Vcvv 2726  cin 3115  wss 3116  𝒫 cpw 3559   cint 3824  cfv 5188  Fincfn 6706  ficfi 6933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709  df-fi 6934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator