ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss GIF version

Theorem fiss 7043
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 sspwb 4249 . . . . 5 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
3 ssrin 3388 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
42, 3sylbi 121 . . . 4 (𝐴𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
5 ssrexv 3248 . . . 4 ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
61, 4, 53syl 17 . . 3 ((𝐵𝑉𝐴𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
7 vex 2766 . . . 4 𝑟 ∈ V
8 simpl 109 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐵𝑉)
98, 1ssexd 4173 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
10 elfi 7037 . . . 4 ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
117, 9, 10sylancr 414 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
12 elfi 7037 . . . . 5 ((𝑟 ∈ V ∧ 𝐵𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
137, 12mpan 424 . . . 4 (𝐵𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
1413adantr 276 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
156, 11, 143imtr4d 203 . 2 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵)))
1615ssrdv 3189 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  cin 3156  wss 3157  𝒫 cpw 3605   cint 3874  cfv 5258  Fincfn 6799  ficfi 7034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802  df-fi 7035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator