ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss GIF version

Theorem fiss 6954
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 sspwb 4201 . . . . 5 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
3 ssrin 3352 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
42, 3sylbi 120 . . . 4 (𝐴𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
5 ssrexv 3212 . . . 4 ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
61, 4, 53syl 17 . . 3 ((𝐵𝑉𝐴𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
7 vex 2733 . . . 4 𝑟 ∈ V
8 simpl 108 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐵𝑉)
98, 1ssexd 4129 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
10 elfi 6948 . . . 4 ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
117, 9, 10sylancr 412 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
12 elfi 6948 . . . . 5 ((𝑟 ∈ V ∧ 𝐵𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
137, 12mpan 422 . . . 4 (𝐵𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
1413adantr 274 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
156, 11, 143imtr4d 202 . 2 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵)))
1615ssrdv 3153 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  cin 3120  wss 3121  𝒫 cpw 3566   cint 3831  cfv 5198  Fincfn 6718  ficfi 6945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721  df-fi 6946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator