Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiss | GIF version |
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | sspwb 4201 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | ssrin 3352 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) |
5 | ssrexv 3212 | . . . 4 ⊢ ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
6 | 1, 4, 5 | 3syl 17 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
7 | vex 2733 | . . . 4 ⊢ 𝑟 ∈ V | |
8 | simpl 108 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
9 | 8, 1 | ssexd 4129 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
10 | elfi 6948 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) | |
11 | 7, 9, 10 | sylancr 412 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) |
12 | elfi 6948 | . . . . 5 ⊢ ((𝑟 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
13 | 7, 12 | mpan 422 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
14 | 13 | adantr 274 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
15 | 6, 11, 14 | 3imtr4d 202 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵))) |
16 | 15 | ssrdv 3153 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 𝒫 cpw 3566 ∩ cint 3831 ‘cfv 5198 Fincfn 6718 ficfi 6945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-fin 6721 df-fi 6946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |