Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiss | GIF version |
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | sspwb 4194 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | ssrin 3347 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) |
5 | ssrexv 3207 | . . . 4 ⊢ ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
6 | 1, 4, 5 | 3syl 17 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
7 | vex 2729 | . . . 4 ⊢ 𝑟 ∈ V | |
8 | simpl 108 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
9 | 8, 1 | ssexd 4122 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
10 | elfi 6936 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) | |
11 | 7, 9, 10 | sylancr 411 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) |
12 | elfi 6936 | . . . . 5 ⊢ ((𝑟 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
13 | 7, 12 | mpan 421 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
14 | 13 | adantr 274 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
15 | 6, 11, 14 | 3imtr4d 202 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵))) |
16 | 15 | ssrdv 3148 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 𝒫 cpw 3559 ∩ cint 3824 ‘cfv 5188 Fincfn 6706 ficfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |