ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss GIF version

Theorem fiss 7036
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 sspwb 4245 . . . . 5 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
3 ssrin 3384 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
42, 3sylbi 121 . . . 4 (𝐴𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
5 ssrexv 3244 . . . 4 ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
61, 4, 53syl 17 . . 3 ((𝐵𝑉𝐴𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
7 vex 2763 . . . 4 𝑟 ∈ V
8 simpl 109 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐵𝑉)
98, 1ssexd 4169 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
10 elfi 7030 . . . 4 ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
117, 9, 10sylancr 414 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
12 elfi 7030 . . . . 5 ((𝑟 ∈ V ∧ 𝐵𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
137, 12mpan 424 . . . 4 (𝐵𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
1413adantr 276 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
156, 11, 143imtr4d 203 . 2 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵)))
1615ssrdv 3185 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  cin 3152  wss 3153  𝒫 cpw 3601   cint 3870  cfv 5254  Fincfn 6794  ficfi 7027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797  df-fi 7028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator