ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss GIF version

Theorem fiss 7140
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴𝐵)
2 sspwb 4301 . . . . 5 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
3 ssrin 3429 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
42, 3sylbi 121 . . . 4 (𝐴𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin))
5 ssrexv 3289 . . . 4 ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
61, 4, 53syl 17 . . 3 ((𝐵𝑉𝐴𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
7 vex 2802 . . . 4 𝑟 ∈ V
8 simpl 109 . . . . 5 ((𝐵𝑉𝐴𝐵) → 𝐵𝑉)
98, 1ssexd 4223 . . . 4 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
10 elfi 7134 . . . 4 ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
117, 9, 10sylancr 414 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = 𝑥))
12 elfi 7134 . . . . 5 ((𝑟 ∈ V ∧ 𝐵𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
137, 12mpan 424 . . . 4 (𝐵𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
1413adantr 276 . . 3 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = 𝑥))
156, 11, 143imtr4d 203 . 2 ((𝐵𝑉𝐴𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵)))
1615ssrdv 3230 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cint 3922  cfv 5317  Fincfn 6885  ficfi 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888  df-fi 7132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator