| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiss | GIF version | ||
| Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 2 | sspwb 4249 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | ssrin 3388 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin)) |
| 5 | ssrexv 3248 | . . . 4 ⊢ ((𝒫 𝐴 ∩ Fin) ⊆ (𝒫 𝐵 ∩ Fin) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
| 6 | 1, 4, 5 | 3syl 17 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥 → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
| 7 | vex 2766 | . . . 4 ⊢ 𝑟 ∈ V | |
| 8 | simpl 109 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
| 9 | 8, 1 | ssexd 4173 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 10 | elfi 7037 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝐴 ∈ V) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) | |
| 11 | 7, 9, 10 | sylancr 414 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑟 = ∩ 𝑥)) |
| 12 | elfi 7037 | . . . . 5 ⊢ ((𝑟 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) | |
| 13 | 7, 12 | mpan 424 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑟 = ∩ 𝑥)) |
| 15 | 6, 11, 14 | 3imtr4d 203 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑟 ∈ (fi‘𝐴) → 𝑟 ∈ (fi‘𝐵))) |
| 16 | 15 | ssrdv 3189 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3605 ∩ cint 3874 ‘cfv 5258 Fincfn 6799 ficfi 7034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-fin 6802 df-fi 7035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |