| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitdvcl | GIF version | ||
| Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| unitdvcl.o | ⊢ 𝑈 = (Unit‘𝑅) |
| unitdvcl.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| unitdvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2210 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | eqidd 2210 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑅)) | |
| 3 | unitdvcl.o | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 5 | eqidd 2210 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (invr‘𝑅) = (invr‘𝑅)) | |
| 6 | unitdvcl.d | . . . 4 ⊢ / = (/r‘𝑅) | |
| 7 | 6 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → / = (/r‘𝑅)) |
| 8 | simp1 1002 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 9 | ringsrg 13976 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 10 | 9 | 3ad2ant1 1023 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 11 | simp2 1003 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 12 | 1, 4, 10, 11 | unitcld 14037 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 13 | simp3 1004 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 14 | 1, 2, 4, 5, 7, 8, 12, 13 | dvrvald 14063 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 15 | eqid 2209 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 16 | 3, 15 | unitinvcl 14052 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 17 | 16 | 3adant2 1021 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 18 | eqid 2209 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 3, 18 | unitmulcl 14042 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
| 20 | 17, 19 | syld3an3 1297 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
| 21 | 14, 20 | eqeltrd 2286 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 .rcmulr 13077 SRingcsrg 13892 Ringcrg 13925 Unitcui 14016 invrcinvr 14049 /rcdvr 14060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-cmn 13789 df-abl 13790 df-mgp 13850 df-ur 13889 df-srg 13893 df-ring 13927 df-oppr 13997 df-dvdsr 14018 df-unit 14019 df-invr 14050 df-dvr 14061 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |