| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitdvcl | GIF version | ||
| Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| unitdvcl.o | ⊢ 𝑈 = (Unit‘𝑅) |
| unitdvcl.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| unitdvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | eqidd 2197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑅)) | |
| 3 | unitdvcl.o | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 5 | eqidd 2197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (invr‘𝑅) = (invr‘𝑅)) | |
| 6 | unitdvcl.d | . . . 4 ⊢ / = (/r‘𝑅) | |
| 7 | 6 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → / = (/r‘𝑅)) |
| 8 | simp1 999 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 9 | ringsrg 13679 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 10 | 9 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 11 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 12 | 1, 4, 10, 11 | unitcld 13740 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 13 | simp3 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 14 | 1, 2, 4, 5, 7, 8, 12, 13 | dvrvald 13766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 15 | eqid 2196 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 16 | 3, 15 | unitinvcl 13755 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 17 | 16 | 3adant2 1018 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 18 | eqid 2196 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 3, 18 | unitmulcl 13745 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
| 20 | 17, 19 | syld3an3 1294 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
| 21 | 14, 20 | eqeltrd 2273 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 SRingcsrg 13595 Ringcrg 13628 Unitcui 13719 invrcinvr 13752 /rcdvr 13763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-cmn 13492 df-abl 13493 df-mgp 13553 df-ur 13592 df-srg 13596 df-ring 13630 df-oppr 13700 df-dvdsr 13721 df-unit 13722 df-invr 13753 df-dvr 13764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |