![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitdvcl | GIF version |
Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
unitdvcl.o | ⊢ 𝑈 = (Unit‘𝑅) |
unitdvcl.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
unitdvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (Base‘𝑅) = (Base‘𝑅)) | |
2 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑅)) | |
3 | unitdvcl.o | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
5 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (invr‘𝑅) = (invr‘𝑅)) | |
6 | unitdvcl.d | . . . 4 ⊢ / = (/r‘𝑅) | |
7 | 6 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → / = (/r‘𝑅)) |
8 | simp1 999 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
9 | ringsrg 13543 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
10 | 9 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
11 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
12 | 1, 4, 10, 11 | unitcld 13604 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
13 | simp3 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
14 | 1, 2, 4, 5, 7, 8, 12, 13 | dvrvald 13630 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
15 | eqid 2193 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
16 | 3, 15 | unitinvcl 13619 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
17 | 16 | 3adant2 1018 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
18 | eqid 2193 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 3, 18 | unitmulcl 13609 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
20 | 17, 19 | syld3an3 1294 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) ∈ 𝑈) |
21 | 14, 20 | eqeltrd 2270 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 .rcmulr 12696 SRingcsrg 13459 Ringcrg 13492 Unitcui 13583 invrcinvr 13616 /rcdvr 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-invr 13617 df-dvr 13628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |