ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqvalr GIF version

Theorem modqvalr 9620
Description: The value of the modulo operation (multiplication in reversed order). (Contributed by Jim Kingdon, 16-Oct-2021.)
Assertion
Ref Expression
modqvalr ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))

Proof of Theorem modqvalr
StepHypRef Expression
1 modqval 9619 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2 qcn 9013 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
323ad2ant2 961 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
4 simp3 941 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 < 𝐵)
54gt0ne0d 7889 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
6 qdivcl 9022 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
75, 6syld3an3 1215 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 / 𝐵) ∈ ℚ)
87flqcld 9572 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
98zcnd 8764 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
103, 9mulcomd 7411 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = ((⌊‘(𝐴 / 𝐵)) · 𝐵))
1110oveq2d 5606 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
121, 11eqtrd 2115 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920   = wceq 1285  wcel 1434  wne 2249   class class class wbr 3811  cfv 4968  (class class class)co 5590  cc 7250  0cc0 7252   · cmul 7257   < clt 7424  cmin 7555   / cdiv 8036  cq 8998  cfl 9563   mod cmo 9617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364  ax-pre-mulext 7365  ax-arch 7366
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-po 4086  df-iso 4087  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-div 8037  df-inn 8316  df-n0 8565  df-z 8646  df-q 8999  df-rp 9029  df-fl 9565  df-mod 9618
This theorem is referenced by:  flqpmodeq  9622  modqvalp1  9638  divalglemnn  10697
  Copyright terms: Public domain W3C validator