![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqge0 | GIF version |
Description: The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
modqge0 | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 966 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 < 𝐵) | |
2 | 1 | gt0ne0d 8193 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ≠ 0) |
3 | qdivcl 9337 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) | |
4 | 2, 3 | syld3an3 1244 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 / 𝐵) ∈ ℚ) |
5 | flqle 9944 | . . . . 5 ⊢ ((𝐴 / 𝐵) ∈ ℚ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)) |
7 | 4 | flqcld 9943 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
8 | 7 | zred 9077 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) |
9 | qre 9319 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
10 | 9 | 3ad2ant1 985 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐴 ∈ ℝ) |
11 | qre 9319 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
12 | 11 | 3ad2ant2 986 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ) |
13 | lemuldiv2 8550 | . . . . 5 ⊢ (((⌊‘(𝐴 / 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))) | |
14 | 8, 10, 12, 1, 13 | syl112anc 1203 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))) |
15 | 6, 14 | mpbird 166 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴) |
16 | 12, 8 | remulcld 7720 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ) |
17 | 10, 16 | subge0d 8215 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ↔ (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴)) |
18 | 15, 17 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
19 | modqval 9990 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
20 | 18, 19 | breqtrrd 3921 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 945 ∈ wcel 1463 ≠ wne 2282 class class class wbr 3895 ‘cfv 5081 (class class class)co 5728 ℝcr 7546 0cc0 7547 · cmul 7552 < clt 7724 ≤ cle 7725 − cmin 7856 / cdiv 8345 ℚcq 9313 ⌊cfl 9934 mod cmo 9988 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-po 4178 df-iso 4179 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-n0 8882 df-z 8959 df-q 9314 df-rp 9344 df-fl 9936 df-mod 9989 |
This theorem is referenced by: modqelico 10000 zmodcl 10010 modqid2 10017 modqabs 10023 modqmuladdim 10033 modqltm1p1mod 10042 modqsubdir 10059 modqeqmodmin 10060 |
Copyright terms: Public domain | W3C validator |