ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqge0 GIF version

Theorem modqge0 10562
Description: The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqge0 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵))

Proof of Theorem modqge0
StepHypRef Expression
1 simp3 1023 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 < 𝐵)
21gt0ne0d 8667 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
3 qdivcl 9846 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
42, 3syld3an3 1316 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 / 𝐵) ∈ ℚ)
5 flqle 10506 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
64, 5syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
74flqcld 10505 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
87zred 9577 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
9 qre 9828 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
1093ad2ant1 1042 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
11 qre 9828 . . . . . 6 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
12113ad2ant2 1043 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
13 lemuldiv2 9037 . . . . 5 (((⌊‘(𝐴 / 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)))
148, 10, 12, 1, 13syl112anc 1275 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)))
156, 14mpbird 167 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴)
1612, 8remulcld 8185 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
1710, 16subge0d 8690 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ↔ (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴))
1815, 17mpbird 167 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
19 modqval 10554 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
2018, 19breqtrrd 4111 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002  wcel 2200  wne 2400   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006  0cc0 8007   · cmul 8012   < clt 8189  cle 8190  cmin 8325   / cdiv 8827  cq 9822  cfl 10496   mod cmo 10552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498  df-mod 10553
This theorem is referenced by:  modqelico  10564  zmodcl  10574  modqid2  10581  modqabs  10587  modqmuladdim  10597  modqltm1p1mod  10606  modqsubdir  10623  modqeqmodmin  10624  bitsinv1lem  12480  4sqlem6  12914
  Copyright terms: Public domain W3C validator