| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulginvinv | GIF version | ||
| Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| mulginvcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulginvcom.t | ⊢ · = (.g‘𝐺) |
| mulginvcom.i | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| mulginvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulginvcom.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulginvcom.i | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13567 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 4 | 3 | 3adant2 1040 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 5 | mulginvcom.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 6 | 1, 5, 2 | mulginvcom 13670 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝑁 · (𝐼‘(𝐼‘𝑋))) = (𝐼‘(𝑁 · (𝐼‘𝑋)))) |
| 7 | 4, 6 | syld3an3 1316 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘(𝐼‘𝑋))) = (𝐼‘(𝑁 · (𝐼‘𝑋)))) |
| 8 | 1, 2 | grpinvinv 13586 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| 9 | 8 | 3adant2 1040 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| 10 | 9 | oveq2d 6010 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘(𝐼‘𝑋))) = (𝑁 · 𝑋)) |
| 11 | 7, 10 | eqtr3d 2264 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 ℤcz 9434 Basecbs 13018 Grpcgrp 13519 invgcminusg 13520 .gcmg 13642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-mulg 13643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |