ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpnpcan GIF version

Theorem grpnpcan 13494
Description: Cancellation law for subtraction (npcan 8296 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpnpcan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)

Proof of Theorem grpnpcan
StepHypRef Expression
1 grpsubadd.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2206 . . . . . 6 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 13450 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
433adant2 1019 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
5 grpsubadd.p . . . . 5 + = (+g𝐺)
61, 5grpcl 13410 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
74, 6syld3an3 1295 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
8 grpsubadd.m . . . 4 = (-g𝐺)
91, 5, 2, 8grpsubval 13448 . . 3 (((𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))))
107, 4, 9syl2anc 411 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))))
111, 5, 8grppncan 13493 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = 𝑋)
124, 11syld3an3 1295 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = 𝑋)
131, 5, 2, 8grpsubval 13448 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
14133adant1 1018 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
1514eqcomd 2212 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) = (𝑋 𝑌))
161, 2grpinvinv 13469 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
17163adant2 1019 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
1815, 17oveq12d 5974 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))) = ((𝑋 𝑌) + 𝑌))
1910, 12, 183eqtr3rd 2248 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  cfv 5279  (class class class)co 5956  Basecbs 12902  +gcplusg 12979  Grpcgrp 13402  invgcminusg 13403  -gcsg 13404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-inn 9052  df-2 9110  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-sbg 13407
This theorem is referenced by:  grpsubsub4  13495  grpnpncan  13497  grpnnncan2  13499  dfgrp3m  13501  nsgconj  13612  conjghm  13682  conjnmz  13685  ablpncan3  13723  lmodvnpcan  14173
  Copyright terms: Public domain W3C validator