| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpnpcan | GIF version | ||
| Description: Cancellation law for subtraction (npcan 8296 analog). (Contributed by NM, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpnpcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2206 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13450 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 4 | 3 | 3adant2 1019 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 5 | grpsubadd.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 13410 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 7 | 4, 6 | syld3an3 1295 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 8 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 9 | 1, 5, 2, 8 | grpsubval 13448 | . . 3 ⊢ (((𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 10 | 7, 4, 9 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 11 | 1, 5, 8 | grppncan 13493 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 12 | 4, 11 | syld3an3 1295 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 13 | 1, 5, 2, 8 | grpsubval 13448 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 14 | 13 | 3adant1 1018 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 15 | 14 | eqcomd 2212 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 − 𝑌)) |
| 16 | 1, 2 | grpinvinv 13469 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 17 | 16 | 3adant2 1019 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 18 | 15, 17 | oveq12d 5974 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌))) = ((𝑋 − 𝑌) + 𝑌)) |
| 19 | 10, 12, 18 | 3eqtr3rd 2248 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 Grpcgrp 13402 invgcminusg 13403 -gcsg 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-inn 9052 df-2 9110 df-ndx 12905 df-slot 12906 df-base 12908 df-plusg 12992 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-sbg 13407 |
| This theorem is referenced by: grpsubsub4 13495 grpnpncan 13497 grpnnncan2 13499 dfgrp3m 13501 nsgconj 13612 conjghm 13682 conjnmz 13685 ablpncan3 13723 lmodvnpcan 14173 |
| Copyright terms: Public domain | W3C validator |