ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval4 GIF version

Theorem bcval4 10878
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10131 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 0re 8054 . . . . . . . . . 10 0 ∈ ℝ
3 elfzelz 10129 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
43zred 9477 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
5 lenlt 8130 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
62, 4, 5sylancr 414 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
71, 6mpbid 147 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0)
87adantl 277 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0)
9 elfzle2 10132 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
109adantl 277 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → 𝐾𝑁)
11 nn0re 9286 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 lenlt 8130 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
134, 11, 12syl2anr 290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1410, 13mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾)
15 ioran 753 . . . . . . 7 (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾))
168, 14, 15sylanbrc 417 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))
1716ex 115 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1817adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1918con2d 625 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁)))
20193impia 1202 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁))
21 bcval3 10877 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
2220, 21syld3an3 1294 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   < clt 8089  cle 8090  0cn0 9277  cz 9354  ...cfz 10112  Ccbc 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-fz 10113  df-seqfrec 10574  df-fac 10852  df-bc 10874
This theorem is referenced by:  bc0k  10882  bcn1  10884  bcpasc  10892
  Copyright terms: Public domain W3C validator