ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval4 GIF version

Theorem bcval4 10863
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10121 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 0re 8045 . . . . . . . . . 10 0 ∈ ℝ
3 elfzelz 10119 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
43zred 9467 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
5 lenlt 8121 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
62, 4, 5sylancr 414 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
71, 6mpbid 147 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0)
87adantl 277 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0)
9 elfzle2 10122 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
109adantl 277 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → 𝐾𝑁)
11 nn0re 9277 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 lenlt 8121 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
134, 11, 12syl2anr 290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1410, 13mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾)
15 ioran 753 . . . . . . 7 (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾))
168, 14, 15sylanbrc 417 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))
1716ex 115 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1817adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1918con2d 625 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁)))
20193impia 1202 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁))
21 bcval3 10862 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
2220, 21syld3an3 1294 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898   < clt 8080  cle 8081  0cn0 9268  cz 9345  ...cfz 10102  Ccbc 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-fz 10103  df-seqfrec 10559  df-fac 10837  df-bc 10859
This theorem is referenced by:  bc0k  10867  bcn1  10869  bcpasc  10877
  Copyright terms: Public domain W3C validator