ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval4 GIF version

Theorem bcval4 10969
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10219 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 0re 8142 . . . . . . . . . 10 0 ∈ ℝ
3 elfzelz 10217 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
43zred 9565 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
5 lenlt 8218 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
62, 4, 5sylancr 414 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
71, 6mpbid 147 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0)
87adantl 277 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0)
9 elfzle2 10220 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
109adantl 277 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → 𝐾𝑁)
11 nn0re 9374 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 lenlt 8218 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
134, 11, 12syl2anr 290 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1410, 13mpbid 147 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾)
15 ioran 757 . . . . . . 7 (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾))
168, 14, 15sylanbrc 417 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))
1716ex 115 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1817adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1918con2d 627 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁)))
20193impia 1224 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁))
21 bcval3 10968 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
2220, 21syld3an3 1316 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995   < clt 8177  cle 8178  0cn0 9365  cz 9442  ...cfz 10200  Ccbc 10964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-fz 10201  df-seqfrec 10665  df-fac 10943  df-bc 10965
This theorem is referenced by:  bc0k  10973  bcn1  10975  bcpasc  10983
  Copyright terms: Public domain W3C validator