| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpsubf | GIF version | ||
| Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) | 
| grpsubcl.m | ⊢ − = (-g‘𝐺) | 
| Ref | Expression | 
|---|---|
| grpsubf | ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpsubcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2196 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13180 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) | 
| 4 | 3 | 3adant2 1018 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) | 
| 5 | eqid 2196 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 13140 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) | 
| 7 | 4, 6 | syld3an3 1294 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) | 
| 8 | 7 | 3expb 1206 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) | 
| 9 | 8 | ralrimivva 2579 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) | 
| 10 | eqid 2196 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) | |
| 11 | 10 | fmpo 6259 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵) | 
| 12 | 9, 11 | sylib 122 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵) | 
| 13 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 14 | 1, 5, 2, 13 | grpsubfvalg 13177 | . . 3 ⊢ (𝐺 ∈ Grp → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)))) | 
| 15 | 14 | feq1d 5394 | . 2 ⊢ (𝐺 ∈ Grp → ( − :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵)) | 
| 16 | 12, 15 | mpbird 167 | 1 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 × cxp 4661 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 invgcminusg 13133 -gcsg 13134 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 | 
| This theorem is referenced by: grpsubcl 13212 cnfldsub 14131 | 
| Copyright terms: Public domain | W3C validator |