ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubf GIF version

Theorem grpsubf 12954
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubf (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem grpsubf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2 eqid 2177 . . . . . . . 8 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 12926 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
433adant2 1016 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
5 eqid 2177 . . . . . . 7 (+g𝐺) = (+g𝐺)
61, 5grpcl 12890 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
74, 6syld3an3 1283 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
873expb 1204 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
98ralrimivva 2559 . . 3 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵)
10 eqid 2177 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
1110fmpo 6204 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)((invg𝐺)‘𝑦)) ∈ 𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵)
129, 11sylib 122 . 2 (𝐺 ∈ Grp → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵)
13 grpsubcl.m . . . 4 = (-g𝐺)
141, 5, 2, 13grpsubfvalg 12923 . . 3 (𝐺 ∈ Grp → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))))
1514feq1d 5354 . 2 (𝐺 ∈ Grp → ( :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵))
1612, 15mpbird 167 1 (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455   × cxp 4626  wf 5214  cfv 5218  (class class class)co 5877  cmpo 5879  Basecbs 12464  +gcplusg 12538  Grpcgrp 12882  invgcminusg 12883  -gcsg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887
This theorem is referenced by:  grpsubcl  12955  cnfldsub  13554
  Copyright terms: Public domain W3C validator