| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubf | GIF version | ||
| Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubf | ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2209 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13547 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 4 | 3 | 3adant2 1021 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 5 | eqid 2209 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 13507 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 7 | 4, 6 | syld3an3 1297 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 8 | 7 | 3expb 1209 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 9 | 8 | ralrimivva 2592 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵) |
| 10 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) | |
| 11 | 10 | fmpo 6317 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)) ∈ 𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵) |
| 12 | 9, 11 | sylib 122 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵) |
| 13 | grpsubcl.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 14 | 1, 5, 2, 13 | grpsubfvalg 13544 | . . 3 ⊢ (𝐺 ∈ Grp → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦)))) |
| 15 | 14 | feq1d 5436 | . 2 ⊢ (𝐺 ∈ Grp → ( − :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))):(𝐵 × 𝐵)⟶𝐵)) |
| 16 | 12, 15 | mpbird 167 | 1 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∀wral 2488 × cxp 4694 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 Basecbs 12998 +gcplusg 13076 Grpcgrp 13499 invgcminusg 13500 -gcsg 13501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 |
| This theorem is referenced by: grpsubcl 13579 cnfldsub 14504 |
| Copyright terms: Public domain | W3C validator |