ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpf2 GIF version

Theorem cnpf2 14164
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnpf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)

Proof of Theorem cnpf2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1001 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 topontop 13971 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3 cnprcl2k 14163 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
42, 3syl3an2 1283 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
5 iscnp 14156 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑎𝐾 ((𝐹𝑃) ∈ 𝑎 → ∃𝑏𝐽 (𝑃𝑏 ∧ (𝐹𝑏) ⊆ 𝑎)))))
64, 5syld3an3 1294 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑎𝐾 ((𝐹𝑃) ∈ 𝑎 → ∃𝑏𝐽 (𝑃𝑏 ∧ (𝐹𝑏) ⊆ 𝑎)))))
71, 6mpbid 147 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑎𝐾 ((𝐹𝑃) ∈ 𝑎 → ∃𝑏𝐽 (𝑃𝑏 ∧ (𝐹𝑏) ⊆ 𝑎))))
87simpld 112 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2160  wral 2468  wrex 2469  wss 3144  cima 4647  wf 5231  cfv 5235  (class class class)co 5896  Topctop 13954  TopOnctopon 13967   CnP ccnp 14143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-map 6676  df-top 13955  df-topon 13968  df-cnp 14146
This theorem is referenced by:  iscnp4  14175  cnptopco  14179  cncnp2m  14188  cnptopresti  14195  lmtopcnp  14207  txcnp  14228  metcnpi3  14474  cnplimcim  14593  limccnpcntop  14601  limccnp2lem  14602  limccnp2cntop  14603
  Copyright terms: Public domain W3C validator