![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnpf2 | GIF version |
Description: A continuous function at point π is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
Ref | Expression |
---|---|
cnpf2 | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β πΉ:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 999 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β πΉ β ((π½ CnP πΎ)βπ)) | |
2 | topontop 13517 | . . . . 5 β’ (πΎ β (TopOnβπ) β πΎ β Top) | |
3 | cnprcl2k 13709 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ πΎ β Top β§ πΉ β ((π½ CnP πΎ)βπ)) β π β π) | |
4 | 2, 3 | syl3an2 1272 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β π β π) |
5 | iscnp 13702 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π β π) β (πΉ β ((π½ CnP πΎ)βπ) β (πΉ:πβΆπ β§ βπ β πΎ ((πΉβπ) β π β βπ β π½ (π β π β§ (πΉ β π) β π))))) | |
6 | 4, 5 | syld3an3 1283 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β (πΉ β ((π½ CnP πΎ)βπ) β (πΉ:πβΆπ β§ βπ β πΎ ((πΉβπ) β π β βπ β π½ (π β π β§ (πΉ β π) β π))))) |
7 | 1, 6 | mpbid 147 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β (πΉ:πβΆπ β§ βπ β πΎ ((πΉβπ) β π β βπ β π½ (π β π β§ (πΉ β π) β π)))) |
8 | 7 | simpld 112 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β ((π½ CnP πΎ)βπ)) β πΉ:πβΆπ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 β§ w3a 978 β wcel 2148 βwral 2455 βwrex 2456 β wss 3130 β cima 4630 βΆwf 5213 βcfv 5217 (class class class)co 5875 Topctop 13500 TopOnctopon 13513 CnP ccnp 13689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-map 6650 df-top 13501 df-topon 13514 df-cnp 13692 |
This theorem is referenced by: iscnp4 13721 cnptopco 13725 cncnp2m 13734 cnptopresti 13741 lmtopcnp 13753 txcnp 13774 metcnpi3 14020 cnplimcim 14139 limccnpcntop 14147 limccnp2lem 14148 limccnp2cntop 14149 |
Copyright terms: Public domain | W3C validator |