| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnpf2 | GIF version | ||
| Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
| Ref | Expression |
|---|---|
| cnpf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) | |
| 2 | topontop 14334 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
| 3 | cnprcl2k 14526 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) | |
| 4 | 2, 3 | syl3an2 1283 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
| 5 | iscnp 14519 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑎 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑎 → ∃𝑏 ∈ 𝐽 (𝑃 ∈ 𝑏 ∧ (𝐹 “ 𝑏) ⊆ 𝑎))))) | |
| 6 | 4, 5 | syld3an3 1294 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑎 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑎 → ∃𝑏 ∈ 𝐽 (𝑃 ∈ 𝑏 ∧ (𝐹 “ 𝑏) ⊆ 𝑎))))) |
| 7 | 1, 6 | mpbid 147 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑎 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑎 → ∃𝑏 ∈ 𝐽 (𝑃 ∈ 𝑏 ∧ (𝐹 “ 𝑏) ⊆ 𝑎)))) |
| 8 | 7 | simpld 112 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 “ cima 4667 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Topctop 14317 TopOnctopon 14330 CnP ccnp 14506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-top 14318 df-topon 14331 df-cnp 14509 |
| This theorem is referenced by: iscnp4 14538 cnptopco 14542 cncnp2m 14551 cnptopresti 14558 lmtopcnp 14570 txcnp 14591 metcnpi3 14837 cnplimcim 14987 limccnpcntop 14995 limccnp2lem 14996 limccnp2cntop 14997 |
| Copyright terms: Public domain | W3C validator |