| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincosq1lem | GIF version | ||
| Description: Lemma for sincosq1sgn 15413. (Contributed by Paul Chapman, 24-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincosq1lem | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire 15379 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 2 | ltle 8195 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2))) | |
| 3 | 1, 2 | mpan2 425 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ (π / 2))) |
| 4 | pire 15373 | . . . . . . . 8 ⊢ π ∈ ℝ | |
| 5 | 4re 9148 | . . . . . . . 8 ⊢ 4 ∈ ℝ | |
| 6 | pigt2lt4 15371 | . . . . . . . . 9 ⊢ (2 < π ∧ π < 4) | |
| 7 | 6 | simpri 113 | . . . . . . . 8 ⊢ π < 4 |
| 8 | 4, 5, 7 | ltleii 8210 | . . . . . . 7 ⊢ π ≤ 4 |
| 9 | 2re 9141 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 10 | 2pos 9162 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 11 | 9, 10 | pm3.2i 272 | . . . . . . . . 9 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 12 | ledivmul 8985 | . . . . . . . . 9 ⊢ ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))) | |
| 13 | 4, 9, 11, 12 | mp3an 1350 | . . . . . . . 8 ⊢ ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)) |
| 14 | 2t2e4 9226 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
| 15 | 14 | breq2i 4067 | . . . . . . . 8 ⊢ (π ≤ (2 · 2) ↔ π ≤ 4) |
| 16 | 13, 15 | bitri 184 | . . . . . . 7 ⊢ ((π / 2) ≤ 2 ↔ π ≤ 4) |
| 17 | 8, 16 | mpbir 146 | . . . . . 6 ⊢ (π / 2) ≤ 2 |
| 18 | letr 8190 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2)) | |
| 19 | 1, 9, 18 | mp3an23 1342 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ (π / 2) ∧ (π / 2) ≤ 2) → 𝐴 ≤ 2)) |
| 20 | 17, 19 | mpan2i 431 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ (π / 2) → 𝐴 ≤ 2)) |
| 21 | 3, 20 | syld 45 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 < (π / 2) → 𝐴 ≤ 2)) |
| 22 | 21 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < (π / 2) → 𝐴 ≤ 2)) |
| 23 | 22 | 3impia 1203 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 𝐴 ≤ 2) |
| 24 | 0xr 8154 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 25 | elioc2 10093 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2))) | |
| 26 | 24, 9, 25 | mp2an 426 | . . 3 ⊢ (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2)) |
| 27 | sin02gt0 12190 | . . 3 ⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | |
| 28 | 26, 27 | sylbir 135 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2) → 0 < (sin‘𝐴)) |
| 29 | 23, 28 | syld3an3 1295 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℝcr 7959 0cc0 7960 · cmul 7965 ℝ*cxr 8141 < clt 8142 ≤ cle 8143 / cdiv 8780 2c2 9122 4c4 9124 (,]cioc 10046 sincsin 12070 πcpi 12073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: sincosq1sgn 15413 sinq12gt0 15417 |
| Copyright terms: Public domain | W3C validator |