ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmultr1 GIF version

Theorem dvdsmultr1 12175
Description: If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
dvdsmultr1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))

Proof of Theorem dvdsmultr1
StepHypRef Expression
1 dvdsmul1 12157 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
213adant1 1018 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
3 zmulcl 9428 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
433adant1 1018 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
5 dvdstr 12172 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾𝑀𝑀 ∥ (𝑀 · 𝑁)) → 𝐾 ∥ (𝑀 · 𝑁)))
64, 5syld3an3 1295 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀 ∥ (𝑀 · 𝑁)) → 𝐾 ∥ (𝑀 · 𝑁)))
72, 6mpan2d 428 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2176   class class class wbr 4045  (class class class)co 5946   · cmul 7932  cz 9374  cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-dvds 12132
This theorem is referenced by:  dvdsmultr1d  12176  ordvdsmul  12178  dvdsfac  12204  bezoutlembi  12359  dvdsmulgcd  12379  bezoutr  12386  lcmgcdlem  12432  pythagtriplem4  12624  dec2dvds  12767  perfect1  15503  lgsdir2  15543
  Copyright terms: Public domain W3C validator