![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgsubcl | GIF version |
Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
subgsubcl.p | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
subgsubcl | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2187 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | subgss 13066 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
3 | 2 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
4 | simp2 999 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3168 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
6 | simp3 1000 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ 𝑆) | |
7 | 3, 6 | sseldd 3168 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐺)) |
8 | eqid 2187 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | eqid 2187 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | subgsubcl.p | . . . 4 ⊢ − = (-g‘𝐺) | |
11 | 1, 8, 9, 10 | grpsubval 12943 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
12 | 5, 7, 11 | syl2anc 411 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
13 | 9 | subginvcl 13075 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) ∈ 𝑆) |
14 | 13 | 3adant2 1017 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) ∈ 𝑆) |
15 | 8 | subgcl 13076 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝑆) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ 𝑆) |
16 | 14, 15 | syld3an3 1293 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ 𝑆) |
17 | 12, 16 | eqeltrd 2264 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ⊆ wss 3141 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 invgcminusg 12900 -gcsg 12901 SubGrpcsubg 13059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 df-plusg 12564 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-minusg 12903 df-sbg 12904 df-subg 13062 |
This theorem is referenced by: issubg4m 13085 ssnmz 13103 lidlsubcl 13676 2idlcpblrng 13711 |
Copyright terms: Public domain | W3C validator |