ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv1 GIF version

Theorem lediv1 8972
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
lediv1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))

Proof of Theorem lediv1
StepHypRef Expression
1 ltdiv1 8971 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
213com12 1210 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 < 𝐴 ↔ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
32notbid 669 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (¬ 𝐵 < 𝐴 ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
4 lenlt 8178 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
543adant3 1020 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
6 gt0ap0 8729 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 # 0)
763adant1 1018 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 # 0)
8 redivclap 8834 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℝ)
97, 8syld3an3 1295 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 / 𝐶) ∈ ℝ)
1093expb 1207 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ)
11103adant2 1019 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℝ)
1263adant1 1018 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 # 0)
13 redivclap 8834 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 # 0) → (𝐵 / 𝐶) ∈ ℝ)
1412, 13syld3an3 1295 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐵 / 𝐶) ∈ ℝ)
15143expb 1207 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
16153adant1 1018 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℝ)
1711, 16lenltd 8220 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ (𝐵 / 𝐶) ↔ ¬ (𝐵 / 𝐶) < (𝐴 / 𝐶)))
183, 5, 173bitr4d 220 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981  wcel 2177   class class class wbr 4054  (class class class)co 5962  cr 7954  0cc0 7955   < clt 8137  cle 8138   # cap 8684   / cdiv 8775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776
This theorem is referenced by:  ge0div  8974  ledivmul  8980  lediv23  8996  lediv1d  9895  icccntr  10152  sin01bnd  12153  cos01bnd  12154  sin02gt0  12160  hashdvds  12628  cosordlem  15406  gausslemma2dlem1a  15620  gausslemma2dlem3  15625  lgseisenlem1  15632  2lgslem1c  15652
  Copyright terms: Public domain W3C validator