| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4792 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 4495 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 4229 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 4229 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 4188 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 ∪ cun 3166 ⊆ wss 3168 𝒫 cpw 3618 × cxp 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-opab 4111 df-xp 4686 |
| This theorem is referenced by: xpex 4795 sqxpexg 4796 resiexg 5010 cnvexg 5226 coexg 5233 fex2 5451 fabexg 5472 resfunexgALT 6203 cofunexg 6204 fnexALT 6206 funexw 6207 opabex3d 6216 opabex3 6217 oprabexd 6222 ofmresex 6232 mpoexxg 6306 tposexg 6354 erex 6654 pmex 6750 mapex 6751 pmvalg 6756 elpmg 6761 fvdiagfn 6790 ixpexgg 6819 ixpsnf1o 6833 map1 6915 xpdom2 6938 xpdom3m 6941 xpen 6954 mapxpen 6957 xpfi 7041 djuex 7157 djuassen 7342 cc2lem 7391 shftfvalg 11179 climconst2 11652 prdsval 13155 prdsbaslemss 13156 pwsval 13173 pwsbas 13174 mulgnngsum 13513 releqgg 13606 eqgex 13607 eqgfval 13608 reldvdsrsrg 13904 dvdsrvald 13905 dvdsrex 13910 aprval 14094 aprap 14098 psrval 14478 psrbasg 14486 psrplusgg 14490 lmfval 14714 txbasex 14779 txopn 14787 txcn 14797 txrest 14798 blfvalps 14907 xmetxp 15029 limccnp2lem 15198 limccnp2cntop 15199 dvfvalap 15203 |
| Copyright terms: Public domain | W3C validator |