| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4831 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 4534 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 4264 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 4264 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 4223 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 𝒫 cpw 3649 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: xpex 4834 sqxpexg 4835 resiexg 5050 cnvexg 5266 coexg 5273 fex2 5494 fabexg 5515 resfunexgALT 6259 cofunexg 6260 fnexALT 6262 funexw 6263 opabex3d 6272 opabex3 6273 oprabexd 6278 ofmresex 6288 mpoexxg 6362 tposexg 6410 erex 6712 pmex 6808 mapex 6809 pmvalg 6814 elpmg 6819 fvdiagfn 6848 ixpexgg 6877 ixpsnf1o 6891 map1 6973 xpdom2 6998 xpdom3m 7001 xpen 7014 mapxpen 7017 xpfi 7102 djuex 7218 djuassen 7407 cc2lem 7460 shftfvalg 11337 climconst2 11810 prdsval 13314 prdsbaslemss 13315 pwsval 13332 pwsbas 13333 mulgnngsum 13672 releqgg 13765 eqgex 13766 eqgfval 13767 dvdsrvald 14065 dvdsrex 14070 aprval 14254 aprap 14258 psrval 14638 psrbasg 14646 psrplusgg 14650 lmfval 14875 txbasex 14939 txopn 14947 txcn 14957 txrest 14958 blfvalps 15067 xmetxp 15189 limccnp2lem 15358 limccnp2cntop 15359 dvfvalap 15363 |
| Copyright terms: Public domain | W3C validator |