| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4776 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 4479 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 4214 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 4214 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 4173 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 𝒫 cpw 3606 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: xpex 4779 sqxpexg 4780 resiexg 4992 cnvexg 5208 coexg 5215 fex2 5429 fabexg 5448 resfunexgALT 6174 cofunexg 6175 fnexALT 6177 funexw 6178 opabex3d 6187 opabex3 6188 oprabexd 6193 ofmresex 6203 mpoexxg 6277 tposexg 6325 erex 6625 pmex 6721 mapex 6722 pmvalg 6727 elpmg 6732 fvdiagfn 6761 ixpexgg 6790 ixpsnf1o 6804 map1 6880 xpdom2 6899 xpdom3m 6902 xpen 6915 mapxpen 6918 xpfi 7002 djuex 7118 djuassen 7300 cc2lem 7349 shftfvalg 11000 climconst2 11473 prdsval 12975 prdsbaslemss 12976 pwsval 12993 pwsbas 12994 mulgnngsum 13333 releqgg 13426 eqgex 13427 eqgfval 13428 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 aprval 13914 aprap 13918 psrval 14296 psrbasg 14303 psrplusgg 14306 lmfval 14512 txbasex 14577 txopn 14585 txcn 14595 txrest 14596 blfvalps 14705 xmetxp 14827 limccnp2lem 14996 limccnp2cntop 14997 dvfvalap 15001 |
| Copyright terms: Public domain | W3C validator |