| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4828 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 4531 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 4263 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 4263 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 4222 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 𝒫 cpw 3649 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-opab 4145 df-xp 4722 |
| This theorem is referenced by: xpex 4831 sqxpexg 4832 resiexg 5046 cnvexg 5262 coexg 5269 fex2 5488 fabexg 5509 resfunexgALT 6243 cofunexg 6244 fnexALT 6246 funexw 6247 opabex3d 6256 opabex3 6257 oprabexd 6262 ofmresex 6272 mpoexxg 6346 tposexg 6394 erex 6694 pmex 6790 mapex 6791 pmvalg 6796 elpmg 6801 fvdiagfn 6830 ixpexgg 6859 ixpsnf1o 6873 map1 6955 xpdom2 6978 xpdom3m 6981 xpen 6994 mapxpen 6997 xpfi 7082 djuex 7198 djuassen 7387 cc2lem 7440 shftfvalg 11315 climconst2 11788 prdsval 13292 prdsbaslemss 13293 pwsval 13310 pwsbas 13311 mulgnngsum 13650 releqgg 13743 eqgex 13744 eqgfval 13745 reldvdsrsrg 14041 dvdsrvald 14042 dvdsrex 14047 aprval 14231 aprap 14235 psrval 14615 psrbasg 14623 psrplusgg 14627 lmfval 14851 txbasex 14916 txopn 14924 txcn 14934 txrest 14935 blfvalps 15044 xmetxp 15166 limccnp2lem 15335 limccnp2cntop 15336 dvfvalap 15340 |
| Copyright terms: Public domain | W3C validator |