Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexg | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 4723 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 4428 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 4166 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 4166 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 4128 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 412 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 ⊆ wss 3121 𝒫 cpw 3566 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-opab 4051 df-xp 4617 |
This theorem is referenced by: xpex 4726 sqxpexg 4727 resiexg 4936 cnvexg 5148 coexg 5155 fex2 5366 fabexg 5385 resfunexgALT 6087 cofunexg 6088 fnexALT 6090 funexw 6091 opabex3d 6100 opabex3 6101 oprabexd 6106 ofmresex 6116 mpoexxg 6189 tposexg 6237 erex 6537 pmex 6631 mapex 6632 pmvalg 6637 elpmg 6642 fvdiagfn 6671 ixpexgg 6700 ixpsnf1o 6714 map1 6790 xpdom2 6809 xpdom3m 6812 xpen 6823 mapxpen 6826 xpfi 6907 djuex 7020 djuassen 7194 cc2lem 7228 shftfvalg 10782 climconst2 11254 lmfval 12986 txbasex 13051 txopn 13059 txcn 13069 txrest 13070 blfvalps 13179 xmetxp 13301 limccnp2lem 13439 limccnp2cntop 13440 dvfvalap 13444 |
Copyright terms: Public domain | W3C validator |