![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpexg | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 4771 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 4474 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 4209 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 4209 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 4168 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ⊆ wss 3153 𝒫 cpw 3601 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-opab 4091 df-xp 4665 |
This theorem is referenced by: xpex 4774 sqxpexg 4775 resiexg 4987 cnvexg 5203 coexg 5210 fex2 5422 fabexg 5441 resfunexgALT 6160 cofunexg 6161 fnexALT 6163 funexw 6164 opabex3d 6173 opabex3 6174 oprabexd 6179 ofmresex 6189 mpoexxg 6263 tposexg 6311 erex 6611 pmex 6707 mapex 6708 pmvalg 6713 elpmg 6718 fvdiagfn 6747 ixpexgg 6776 ixpsnf1o 6790 map1 6866 xpdom2 6885 xpdom3m 6888 xpen 6901 mapxpen 6904 xpfi 6986 djuex 7102 djuassen 7277 cc2lem 7326 shftfvalg 10962 climconst2 11434 mulgnngsum 13197 releqgg 13290 eqgex 13291 eqgfval 13292 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 aprval 13778 aprap 13782 psrval 14152 psrbasg 14159 psrplusgg 14162 lmfval 14360 txbasex 14425 txopn 14433 txcn 14443 txrest 14444 blfvalps 14553 xmetxp 14675 limccnp2lem 14830 limccnp2cntop 14831 dvfvalap 14835 |
Copyright terms: Public domain | W3C validator |