![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpexg | GIF version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 4772 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 4475 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 4210 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 4210 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 4169 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 ⊆ wss 3154 𝒫 cpw 3602 × cxp 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-opab 4092 df-xp 4666 |
This theorem is referenced by: xpex 4775 sqxpexg 4776 resiexg 4988 cnvexg 5204 coexg 5211 fex2 5423 fabexg 5442 resfunexgALT 6162 cofunexg 6163 fnexALT 6165 funexw 6166 opabex3d 6175 opabex3 6176 oprabexd 6181 ofmresex 6191 mpoexxg 6265 tposexg 6313 erex 6613 pmex 6709 mapex 6710 pmvalg 6715 elpmg 6720 fvdiagfn 6749 ixpexgg 6778 ixpsnf1o 6792 map1 6868 xpdom2 6887 xpdom3m 6890 xpen 6903 mapxpen 6906 xpfi 6988 djuex 7104 djuassen 7279 cc2lem 7328 shftfvalg 10965 climconst2 11437 mulgnngsum 13200 releqgg 13293 eqgex 13294 eqgfval 13295 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrex 13597 aprval 13781 aprap 13785 psrval 14163 psrbasg 14170 psrplusgg 14173 lmfval 14371 txbasex 14436 txopn 14444 txcn 14454 txrest 14455 blfvalps 14564 xmetxp 14686 limccnp2lem 14855 limccnp2cntop 14856 dvfvalap 14860 |
Copyright terms: Public domain | W3C validator |