| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpexg | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpsspw 4775 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 4478 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 4213 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 4213 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | 
| 6 | ssexg 4172 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 𝒫 cpw 3605 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: xpex 4778 sqxpexg 4779 resiexg 4991 cnvexg 5207 coexg 5214 fex2 5426 fabexg 5445 resfunexgALT 6165 cofunexg 6166 fnexALT 6168 funexw 6169 opabex3d 6178 opabex3 6179 oprabexd 6184 ofmresex 6194 mpoexxg 6268 tposexg 6316 erex 6616 pmex 6712 mapex 6713 pmvalg 6718 elpmg 6723 fvdiagfn 6752 ixpexgg 6781 ixpsnf1o 6795 map1 6871 xpdom2 6890 xpdom3m 6893 xpen 6906 mapxpen 6909 xpfi 6993 djuex 7109 djuassen 7284 cc2lem 7333 shftfvalg 10983 climconst2 11456 mulgnngsum 13257 releqgg 13350 eqgex 13351 eqgfval 13352 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 aprval 13838 aprap 13842 psrval 14220 psrbasg 14227 psrplusgg 14230 lmfval 14428 txbasex 14493 txopn 14501 txcn 14511 txrest 14512 blfvalps 14621 xmetxp 14743 limccnp2lem 14912 limccnp2cntop 14913 dvfvalap 14917 | 
| Copyright terms: Public domain | W3C validator |