Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoels Structured version   Visualization version   GIF version

Theorem dfcoels 38386
Description: Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.)
Assertion
Ref Expression
dfcoels 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Distinct variable group:   𝑢,𝐴,𝑥,𝑦

Proof of Theorem dfcoels
StepHypRef Expression
1 df-coels 38368 . 2 𝐴 = ≀ ( E ↾ 𝐴)
2 1cossres 38385 . 2 ≀ ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦)}
3 brcnvep 38221 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
43elv 3493 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
5 brcnvep 38221 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑦𝑦𝑢))
65elv 3493 . . . . 5 (𝑢 E 𝑦𝑦𝑢)
74, 6anbi12i 627 . . . 4 ((𝑢 E 𝑥𝑢 E 𝑦) ↔ (𝑥𝑢𝑦𝑢))
87rexbii 3100 . . 3 (∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦) ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢))
98opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
101, 2, 93eqtri 2772 1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wrex 3076  Vcvv 3488   class class class wbr 5166  {copab 5228   E cep 5598  ccnv 5699  cres 5702  ccoss 38135  ccoels 38136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712  df-coss 38367  df-coels 38368
This theorem is referenced by:  brcoels  38391
  Copyright terms: Public domain W3C validator