![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoels | Structured version Visualization version GIF version |
Description: Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
Ref | Expression |
---|---|
dfcoels | ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 38394 | . 2 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1cossres 38411 | . 2 ⊢ ≀ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} | |
3 | brcnvep 38247 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
4 | 3 | elv 3483 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
5 | brcnvep 38247 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢)) | |
6 | 5 | elv 3483 | . . . . 5 ⊢ (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢) |
7 | 4, 6 | anbi12i 628 | . . . 4 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
8 | 7 | rexbii 3092 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
9 | 8 | opabbii 5215 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
10 | 1, 2, 9 | 3eqtri 2767 | 1 ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 {copab 5210 E cep 5588 ◡ccnv 5688 ↾ cres 5691 ≀ ccoss 38162 ∼ ccoels 38163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-res 5701 df-coss 38393 df-coels 38394 |
This theorem is referenced by: brcoels 38417 |
Copyright terms: Public domain | W3C validator |