Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoels | Structured version Visualization version GIF version |
Description: Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
Ref | Expression |
---|---|
dfcoels | ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 36546 | . 2 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1cossres 36560 | . 2 ⊢ ≀ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} | |
3 | brcnvep 36412 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
4 | 3 | elv 3435 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
5 | brcnvep 36412 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢)) | |
6 | 5 | elv 3435 | . . . . 5 ⊢ (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢) |
7 | 4, 6 | anbi12i 627 | . . . 4 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
8 | 7 | rexbii 3179 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
9 | 8 | opabbii 5140 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
10 | 1, 2, 9 | 3eqtri 2770 | 1 ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wrex 3065 Vcvv 3429 class class class wbr 5073 {copab 5135 E cep 5489 ◡ccnv 5583 ↾ cres 5586 ≀ ccoss 36341 ∼ ccoels 36342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5074 df-opab 5136 df-eprel 5490 df-xp 5590 df-rel 5591 df-cnv 5592 df-res 5596 df-coss 36545 df-coels 36546 |
This theorem is referenced by: brcoels 36566 |
Copyright terms: Public domain | W3C validator |