Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoels Structured version   Visualization version   GIF version

Theorem dfcoels 36532
Description: Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.)
Assertion
Ref Expression
dfcoels 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Distinct variable group:   𝑢,𝐴,𝑥,𝑦

Proof of Theorem dfcoels
StepHypRef Expression
1 df-coels 36517 . 2 𝐴 = ≀ ( E ↾ 𝐴)
2 1cossres 36531 . 2 ≀ ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦)}
3 brcnvep 36383 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
43elv 3436 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
5 brcnvep 36383 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑦𝑦𝑢))
65elv 3436 . . . . 5 (𝑢 E 𝑦𝑦𝑢)
74, 6anbi12i 626 . . . 4 ((𝑢 E 𝑥𝑢 E 𝑦) ↔ (𝑥𝑢𝑦𝑢))
87rexbii 3179 . . 3 (∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦) ↔ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢))
98opabbii 5145 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 E 𝑥𝑢 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
101, 2, 93eqtri 2771 1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wrex 3066  Vcvv 3430   class class class wbr 5078  {copab 5140   E cep 5493  ccnv 5587  cres 5590  ccoss 36312  ccoels 36313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-eprel 5494  df-xp 5594  df-rel 5595  df-cnv 5596  df-res 5600  df-coss 36516  df-coels 36517
This theorem is referenced by:  brcoels  36537
  Copyright terms: Public domain W3C validator