![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoels | Structured version Visualization version GIF version |
Description: Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
Ref | Expression |
---|---|
dfcoels | ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 34713 | . 2 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1cossres 34727 | . 2 ⊢ ≀ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} | |
3 | brcnvep 34578 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
4 | 3 | elv 3418 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
5 | brcnvep 34578 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢)) | |
6 | 5 | elv 3418 | . . . . 5 ⊢ (𝑢◡ E 𝑦 ↔ 𝑦 ∈ 𝑢) |
7 | 4, 6 | anbi12i 620 | . . . 4 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
8 | 7 | rexbii 3251 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)) |
9 | 8 | opabbii 4942 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢◡ E 𝑥 ∧ 𝑢◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
10 | 1, 2, 9 | 3eqtri 2853 | 1 ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 Vcvv 3414 class class class wbr 4875 {copab 4937 E cep 5256 ◡ccnv 5345 ↾ cres 5348 ≀ ccoss 34519 ∼ ccoels 34520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-eprel 5257 df-xp 5352 df-rel 5353 df-cnv 5354 df-res 5358 df-coss 34712 df-coels 34713 |
This theorem is referenced by: brcoels 34733 |
Copyright terms: Public domain | W3C validator |