Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk2 Structured version   Visualization version   GIF version

Theorem cdlemk2 38842
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemk2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝑅‘(𝐺𝐹))))

Proof of Theorem cdlemk2
StepHypRef Expression
1 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
3 simp2l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 cdlemk.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemk.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 38156 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
71, 3, 6syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
84, 5ltrnco 38729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
91, 2, 7, 8syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐹) ∈ 𝑇)
10 cdlemk.l . . . . 5 = (le‘𝐾)
11 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrnel 38149 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
13123adant2r 1178 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
14 cdlemk.j . . . 4 = (join‘𝐾)
15 cdlemk.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
1610, 14, 11, 4, 5, 15trljat3 38178 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = (((𝐺𝐹)‘(𝐹𝑃)) (𝑅‘(𝐺𝐹))))
171, 9, 13, 16syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = (((𝐺𝐹)‘(𝐹𝑃)) (𝑅‘(𝐺𝐹))))
18 simp3l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
1910, 11, 4, 5ltrncoval 38155 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
201, 9, 3, 18, 19syl121anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
21 coass 6168 . . . . . 6 ((𝐺𝐹) ∘ 𝐹) = (𝐺 ∘ (𝐹𝐹))
22 cdlemk.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
2322, 4, 5ltrn1o 38134 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
241, 3, 23syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
25 f1ococnv1 6742 . . . . . . . . 9 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2624, 25syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
2726coeq2d 5770 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = (𝐺 ∘ ( I ↾ 𝐵)))
2822, 4, 5ltrn1o 38134 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
291, 2, 28syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:𝐵1-1-onto𝐵)
30 f1of 6714 . . . . . . . 8 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
31 fcoi1 6646 . . . . . . . 8 (𝐺:𝐵𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
3229, 30, 313syl 18 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
3327, 32eqtrd 2780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = 𝐺)
3421, 33eqtrid 2792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹) ∘ 𝐹) = 𝐺)
3534fveq1d 6773 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = (𝐺𝑃))
3620, 35eqtr3d 2782 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) = (𝐺𝑃))
3736oveq1d 7286 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹)‘(𝐹𝑃)) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
3817, 37eqtr2d 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝑅‘(𝐺𝐹))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079   I cid 5489  ccnv 5589  cres 5592  ccom 5594  wf 6428  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  Basecbs 16910  lecple 16967  joincjn 18027  Atomscatm 37273  HLchlt 37360  LHypclh 37994  LTrncltrn 38111  trLctrl 38168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-riotaBAD 36963
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-undef 8080  df-map 8600  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-llines 37508  df-lplanes 37509  df-lvols 37510  df-lines 37511  df-psubsp 37513  df-pmap 37514  df-padd 37806  df-lhyp 37998  df-laut 37999  df-ldil 38114  df-ltrn 38115  df-trl 38169
This theorem is referenced by:  cdlemk5  38846  cdlemk5u  38871
  Copyright terms: Public domain W3C validator