Proof of Theorem lediv23
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ∈ ℝ) | 
| 2 |  | gt0ne0 11728 | . . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → 𝐵 ≠ 0) | 
| 3 | 1, 2 | jca 511 | . . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 0 <
𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | 
| 4 |  | redivcl 11986 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | 
| 5 | 4 | 3expb 1121 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) | 
| 6 | 3, 5 | sylan2 593 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → (𝐴 / 𝐵) ∈ ℝ) | 
| 7 | 6 | 3adant3 1133 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ) | 
| 8 |  | simp3 1139 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | 
| 9 |  | simp2 1138 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | 
| 10 |  | lemul1 12119 | . . . 4
⊢ (((𝐴 / 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵))) | 
| 11 | 7, 8, 9, 10 | syl3anc 1373 | . . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ 𝐶 ∈ ℝ) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵))) | 
| 12 | 11 | 3adant3r 1182 | . 2
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵))) | 
| 13 |  | recn 11245 | . . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) | 
| 14 | 13 | adantr 480 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → 𝐴 ∈
ℂ) | 
| 15 |  | recn 11245 | . . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) | 
| 16 | 15 | ad2antrl 728 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → 𝐵 ∈
ℂ) | 
| 17 | 2 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → 𝐵 ≠ 0) | 
| 18 | 14, 16, 17 | divcan1d 12044 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | 
| 19 | 18 | 3adant3 1133 | . . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | 
| 20 | 19 | breq1d 5153 | . 2
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵) ↔ 𝐴 ≤ (𝐶 · 𝐵))) | 
| 21 |  | remulcl 11240 | . . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | 
| 22 | 21 | ancoms 458 | . . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | 
| 23 | 22 | adantrr 717 | . . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐶 · 𝐵) ∈ ℝ) | 
| 24 | 23 | 3adant1 1131 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐶 · 𝐵) ∈ ℝ) | 
| 25 |  | lediv1 12133 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶))) | 
| 26 | 24, 25 | syld3an2 1413 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶))) | 
| 27 |  | recn 11245 | . . . . . . . . 9
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) | 
| 28 | 27 | adantr 480 | . . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → 𝐶 ∈ ℂ) | 
| 29 |  | gt0ne0 11728 | . . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → 𝐶 ≠ 0) | 
| 30 | 28, 29 | jca 511 | . . . . . . 7
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) | 
| 31 |  | divcan3 11948 | . . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | 
| 32 | 31 | 3expb 1121 | . . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | 
| 33 | 15, 30, 32 | syl2an 596 | . . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | 
| 34 | 33 | 3adant1 1131 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | 
| 35 | 34 | breq2d 5155 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) ≤ 𝐵)) | 
| 36 | 26, 35 | bitrd 279 | . . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ 𝐵)) | 
| 37 | 36 | 3adant2r 1180 | . 2
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ 𝐵)) | 
| 38 | 12, 20, 37 | 3bitrd 305 | 1
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵)) |