MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv23 Structured version   Visualization version   GIF version

Theorem lediv23 11510
Description: Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
Assertion
Ref Expression
lediv23 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem lediv23
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2 gt0ne0 11083 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
31, 2jca 514 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
4 redivcl 11337 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
543expb 1116 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
63, 5sylan2 594 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
763adant3 1128 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
8 simp3 1134 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
9 simp2 1133 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
10 lemul1 11470 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵)))
117, 8, 9, 10syl3anc 1367 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵)))
12113adant3r 1177 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵)))
13 recn 10605 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1413adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
15 recn 10605 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 726 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
172adantl 484 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
1814, 16, 17divcan1d 11395 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
19183adant3 1128 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
2019breq1d 5052 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((𝐴 / 𝐵) · 𝐵) ≤ (𝐶 · 𝐵) ↔ 𝐴 ≤ (𝐶 · 𝐵)))
21 remulcl 10600 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
2221ancoms 461 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ)
2322adantrr 715 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
24233adant1 1126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ)
25 lediv1 11483 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶)))
2624, 25syld3an2 1407 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶)))
27 recn 10605 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2827adantr 483 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
29 gt0ne0 11083 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
3028, 29jca 514 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
31 divcan3 11302 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
32313expb 1116 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3315, 30, 32syl2an 597 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
34333adant1 1126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵)
3534breq2d 5054 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) ≤ 𝐵))
3626, 35bitrd 281 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ 𝐵))
37363adant2r 1175 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) ≤ 𝐵))
3812, 20, 373bitrd 307 1 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006   class class class wbr 5042  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515   · cmul 10520   < clt 10653  cle 10654   / cdiv 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276
This theorem is referenced by:  divle1le  12438  ledivge1le  12439  lediv23d  12478  pntlemj  26166  minvecolem4  28642  stoweidlem36  42469
  Copyright terms: Public domain W3C validator