Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk9 Structured version   Visualization version   GIF version

Theorem cdlemk9 40798
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝑋𝐺)))

Proof of Theorem cdlemk9
StepHypRef Expression
1 cdlemk.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemk.l . . . 4 = (le‘𝐾)
3 cdlemk.j . . . 4 = (join‘𝐾)
4 cdlemk.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdlemk.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdlemk.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemk.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdlemk.m . . . 4 = (meet‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8cdlemk8 40797 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑋𝑃)) = ((𝐺𝑃) (𝑅‘(𝑋𝐺))))
109oveq1d 7465 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (((𝐺𝑃) (𝑅‘(𝑋𝐺))) 𝑊))
11 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
122, 4, 5, 6ltrnel 40098 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
13123adant2r 1179 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
14 eqid 2740 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
152, 8, 14, 4, 5lhpmat 39989 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → ((𝐺𝑃) 𝑊) = (0.‘𝐾))
1611, 13, 15syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) 𝑊) = (0.‘𝐾))
1716oveq1d 7465 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) 𝑊) (𝑅‘(𝑋𝐺))) = ((0.‘𝐾) (𝑅‘(𝑋𝐺))))
18 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
19 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
20 simp3l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
212, 4, 5, 6ltrnat 40099 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
2211, 19, 20, 21syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
23 simp2r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
245, 6ltrncnv 40105 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
2511, 19, 24syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
265, 6ltrnco 40678 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐺𝑇) → (𝑋𝐺) ∈ 𝑇)
2711, 23, 25, 26syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐺) ∈ 𝑇)
281, 5, 6, 7trlcl 40123 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐺) ∈ 𝑇) → (𝑅‘(𝑋𝐺)) ∈ 𝐵)
2911, 27, 28syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐺)) ∈ 𝐵)
30 simp1r 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
311, 5lhpbase 39957 . . . . 5 (𝑊𝐻𝑊𝐵)
3230, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
332, 5, 6, 7trlle 40143 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐺) ∈ 𝑇) → (𝑅‘(𝑋𝐺)) 𝑊)
3411, 27, 33syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐺)) 𝑊)
351, 2, 3, 8, 4atmod4i2 39826 . . . 4 ((𝐾 ∈ HL ∧ ((𝐺𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) ∈ 𝐵𝑊𝐵) ∧ (𝑅‘(𝑋𝐺)) 𝑊) → (((𝐺𝑃) 𝑊) (𝑅‘(𝑋𝐺))) = (((𝐺𝑃) (𝑅‘(𝑋𝐺))) 𝑊))
3618, 22, 29, 32, 34, 35syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) 𝑊) (𝑅‘(𝑋𝐺))) = (((𝐺𝑃) (𝑅‘(𝑋𝐺))) 𝑊))
37 hlol 39319 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
3818, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
391, 3, 14olj02 39184 . . . 4 ((𝐾 ∈ OL ∧ (𝑅‘(𝑋𝐺)) ∈ 𝐵) → ((0.‘𝐾) (𝑅‘(𝑋𝐺))) = (𝑅‘(𝑋𝐺)))
4038, 29, 39syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((0.‘𝐾) (𝑅‘(𝑋𝐺))) = (𝑅‘(𝑋𝐺)))
4117, 36, 403eqtr3d 2788 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑅‘(𝑋𝐺))) 𝑊) = (𝑅‘(𝑋𝐺)))
4210, 41eqtrd 2780 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝑋𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  ccnv 5699  ccom 5704  cfv 6575  (class class class)co 7450  Basecbs 17260  lecple 17320  joincjn 18383  meetcmee 18384  0.cp0 18495  OLcol 39132  Atomscatm 39221  HLchlt 39308  LHypclh 39943  LTrncltrn 40060  trLctrl 40117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-riotaBAD 38911
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-undef 8316  df-map 8888  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-p1 18498  df-lat 18504  df-clat 18571  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309  df-llines 39457  df-lplanes 39458  df-lvols 39459  df-lines 39460  df-psubsp 39462  df-pmap 39463  df-padd 39755  df-lhyp 39947  df-laut 39948  df-ldil 40063  df-ltrn 40064  df-trl 40118
This theorem is referenced by:  cdlemk10  40802
  Copyright terms: Public domain W3C validator