![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem3aN | Structured version Visualization version GIF version |
Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihglblem.b | ⊢ 𝐵 = (Base‘𝐾) |
dihglblem.l | ⊢ ≤ = (le‘𝐾) |
dihglblem.m | ⊢ ∧ = (meet‘𝐾) |
dihglblem.g | ⊢ 𝐺 = (glb‘𝐾) |
dihglblem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihglblem.t | ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} |
dihglblem.i | ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) |
dihglblem.ih | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihglblem3aN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglblem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihglblem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | dihglblem.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | dihglblem.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
5 | dihglblem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dihglblem.t | . . . . 5 ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} | |
7 | 1, 2, 3, 4, 5, 6 | dihglblem2N 41251 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
8 | 7 | 3adant2r 1179 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
9 | 8 | fveq2d 6924 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = (𝐼‘(𝐺‘𝑇))) |
10 | dihglblem.i | . . 3 ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) | |
11 | dihglblem.ih | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | dihglblem3N 41252 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑇)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
13 | 9, 12 | eqtrd 2780 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 glbcglb 18380 meetcmee 18382 HLchlt 39306 LHypclh 39941 DIsoBcdib 41095 DIsoHcdih 41185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-disoa 40986 df-dib 41096 df-dih 41186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |