![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem3aN | Structured version Visualization version GIF version |
Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihglblem.b | ⊢ 𝐵 = (Base‘𝐾) |
dihglblem.l | ⊢ ≤ = (le‘𝐾) |
dihglblem.m | ⊢ ∧ = (meet‘𝐾) |
dihglblem.g | ⊢ 𝐺 = (glb‘𝐾) |
dihglblem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihglblem.t | ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} |
dihglblem.i | ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) |
dihglblem.ih | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihglblem3aN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihglblem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihglblem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | dihglblem.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | dihglblem.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
5 | dihglblem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dihglblem.t | . . . . 5 ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} | |
7 | 1, 2, 3, 4, 5, 6 | dihglblem2N 37314 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
8 | 7 | 3adant2r 1228 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
9 | 8 | fveq2d 6416 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = (𝐼‘(𝐺‘𝑇))) |
10 | dihglblem.i | . . 3 ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) | |
11 | dihglblem.ih | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | dihglblem3N 37315 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑇)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
13 | 9, 12 | eqtrd 2834 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∃wrex 3091 {crab 3094 ⊆ wss 3770 ∅c0 4116 ∩ ciin 4712 class class class wbr 4844 ‘cfv 6102 (class class class)co 6879 Basecbs 16183 lecple 16273 glbcglb 17257 meetcmee 17259 HLchlt 35370 LHypclh 36004 DIsoBcdib 37158 DIsoHcdih 37248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-map 8098 df-proset 17242 df-poset 17260 df-plt 17272 df-lub 17288 df-glb 17289 df-join 17290 df-meet 17291 df-p0 17353 df-p1 17354 df-lat 17360 df-clat 17422 df-oposet 35196 df-ol 35198 df-oml 35199 df-covers 35286 df-ats 35287 df-atl 35318 df-cvlat 35342 df-hlat 35371 df-lhyp 36008 df-laut 36009 df-ldil 36124 df-ltrn 36125 df-trl 36179 df-disoa 37049 df-dib 37159 df-dih 37249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |