Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3aN Structured version   Visualization version   GIF version

Theorem dihglblem3aN 41261
Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
dihglblem.i 𝐽 = ((DIsoB‘𝐾)‘𝑊)
dihglblem.ih 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihglblem3aN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑇 (𝐼𝑥))
Distinct variable groups:   𝑥,𝑢,𝑣,   𝑥,   𝑥,𝐵,𝑢   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑆,𝑢,𝑣   𝑥,𝑇   𝑥,𝑊,𝑢,𝑣   𝑢, ,𝑣   𝑣,𝐵   𝑢,𝐺,𝑣   𝑢,𝐻,𝑣   𝑢,𝐾,𝑣
Allowed substitution hints:   𝑇(𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐽(𝑥,𝑣,𝑢)

Proof of Theorem dihglblem3aN
StepHypRef Expression
1 dihglblem.b . . . . 5 𝐵 = (Base‘𝐾)
2 dihglblem.l . . . . 5 = (le‘𝐾)
3 dihglblem.m . . . . 5 = (meet‘𝐾)
4 dihglblem.g . . . . 5 𝐺 = (glb‘𝐾)
5 dihglblem.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 dihglblem.t . . . . 5 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
71, 2, 3, 4, 5, 6dihglblem2N 41259 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
873adant2r 1180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
98fveq2d 6879 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = (𝐼‘(𝐺𝑇)))
10 dihglblem.i . . 3 𝐽 = ((DIsoB‘𝐾)‘𝑊)
11 dihglblem.ih . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
121, 2, 3, 4, 5, 6, 10, 11dihglblem3N 41260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))
139, 12eqtrd 2770 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑇 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  wss 3926  c0 4308   ciin 4968   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  glbcglb 18320  meetcmee 18322  HLchlt 39314  LHypclh 39949  DIsoBcdib 41103  DIsoHcdih 41193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124  df-disoa 40994  df-dib 41104  df-dih 41194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator