| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem3aN | Structured version Visualization version GIF version | ||
| Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihglblem.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihglblem.l | ⊢ ≤ = (le‘𝐾) |
| dihglblem.m | ⊢ ∧ = (meet‘𝐾) |
| dihglblem.g | ⊢ 𝐺 = (glb‘𝐾) |
| dihglblem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihglblem.t | ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} |
| dihglblem.i | ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) |
| dihglblem.ih | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihglblem3aN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihglblem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihglblem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihglblem.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 4 | dihglblem.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | dihglblem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dihglblem.t | . . . . 5 ⊢ 𝑇 = {𝑢 ∈ 𝐵 ∣ ∃𝑣 ∈ 𝑆 𝑢 = (𝑣 ∧ 𝑊)} | |
| 7 | 1, 2, 3, 4, 5, 6 | dihglblem2N 41312 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
| 8 | 7 | 3adant2r 1180 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐺‘𝑆) = (𝐺‘𝑇)) |
| 9 | 8 | fveq2d 6821 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = (𝐼‘(𝐺‘𝑇))) |
| 10 | dihglblem.i | . . 3 ⊢ 𝐽 = ((DIsoB‘𝐾)‘𝑊) | |
| 11 | dihglblem.ih | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 12 | 1, 2, 3, 4, 5, 6, 10, 11 | dihglblem3N 41313 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑇)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
| 13 | 9, 12 | eqtrd 2765 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) ∧ (𝐺‘𝑆) ≤ 𝑊) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑇 (𝐼‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 {crab 3393 ⊆ wss 3900 ∅c0 4281 ∩ ciin 4940 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 glbcglb 18208 meetcmee 18210 HLchlt 39368 LHypclh 40002 DIsoBcdib 41156 DIsoHcdih 41246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40006 df-laut 40007 df-ldil 40122 df-ltrn 40123 df-trl 40177 df-disoa 41047 df-dib 41157 df-dih 41247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |