![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmoub2i | Structured version Visualization version GIF version |
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | β’ π = (BaseSetβπ) |
nmoubi.y | β’ π = (BaseSetβπ) |
nmoubi.l | β’ πΏ = (normCVβπ) |
nmoubi.m | β’ π = (normCVβπ) |
nmoubi.3 | β’ π = (π normOpOLD π) |
nmoubi.u | β’ π β NrmCVec |
nmoubi.w | β’ π β NrmCVec |
Ref | Expression |
---|---|
nmoub2i | β’ ((π:πβΆπ β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β π (πβ(πβπ₯)) β€ (π΄ Β· (πΏβπ₯))) β (πβπ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | nmoubi.y | . . . 4 β’ π = (BaseSetβπ) | |
3 | nmoubi.l | . . . 4 β’ πΏ = (normCVβπ) | |
4 | nmoubi.m | . . . 4 β’ π = (normCVβπ) | |
5 | nmoubi.3 | . . . 4 β’ π = (π normOpOLD π) | |
6 | nmoubi.u | . . . 4 β’ π β NrmCVec | |
7 | nmoubi.w | . . . 4 β’ π β NrmCVec | |
8 | 1, 2, 3, 4, 5, 6, 7 | nmoub3i 30460 | . . 3 β’ ((π:πβΆπ β§ π΄ β β β§ βπ₯ β π (πβ(πβπ₯)) β€ (π΄ Β· (πΏβπ₯))) β (πβπ) β€ (absβπ΄)) |
9 | 8 | 3adant2r 1178 | . 2 β’ ((π:πβΆπ β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β π (πβ(πβπ₯)) β€ (π΄ Β· (πΏβπ₯))) β (πβπ) β€ (absβπ΄)) |
10 | absid 15250 | . . 3 β’ ((π΄ β β β§ 0 β€ π΄) β (absβπ΄) = π΄) | |
11 | 10 | 3ad2ant2 1133 | . 2 β’ ((π:πβΆπ β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β π (πβ(πβπ₯)) β€ (π΄ Β· (πΏβπ₯))) β (absβπ΄) = π΄) |
12 | 9, 11 | breqtrd 5174 | 1 β’ ((π:πβΆπ β§ (π΄ β β β§ 0 β€ π΄) β§ βπ₯ β π (πβ(πβπ₯)) β€ (π΄ Β· (πΏβπ₯))) β (πβπ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11115 0cc0 11116 Β· cmul 11121 β€ cle 11256 abscabs 15188 NrmCVeccnv 30271 BaseSetcba 30273 normCVcnmcv 30277 normOpOLD cnmoo 30428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-grpo 30180 df-gid 30181 df-ginv 30182 df-ablo 30232 df-vc 30246 df-nv 30279 df-va 30282 df-ba 30283 df-sm 30284 df-0v 30285 df-nmcv 30287 df-nmoo 30432 |
This theorem is referenced by: nmlnoubi 30483 nmopub2tHIL 31597 |
Copyright terms: Public domain | W3C validator |