MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub2i Structured version   Visualization version   GIF version

Theorem nmoub2i 28855
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub2i ((𝑇:𝑋𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub2i
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmoub3i 28854 . . 3 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
983adant2r 1181 . 2 ((𝑇:𝑋𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
10 absid 14860 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
11103ad2ant2 1136 . 2 ((𝑇:𝑋𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (abs‘𝐴) = 𝐴)
129, 11breqtrd 5079 1 ((𝑇:𝑋𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729   · cmul 10734  cle 10868  abscabs 14797  NrmCVeccnv 28665  BaseSetcba 28667  normCVcnmcv 28671   normOpOLD cnmoo 28822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-grpo 28574  df-gid 28575  df-ginv 28576  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-nmcv 28681  df-nmoo 28826
This theorem is referenced by:  nmlnoubi  28877  nmopub2tHIL  29991
  Copyright terms: Public domain W3C validator