![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml8 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
Ref | Expression |
---|---|
cdleml6.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml6.j | ⊢ ∨ = (join‘𝐾) |
cdleml6.m | ⊢ ∧ = (meet‘𝐾) |
cdleml6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml6.p | ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
cdleml6.z | ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
cdleml6.y | ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdleml6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
cdleml6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
cdleml6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml6.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml8 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdleml6.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleml6.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
4 | cdleml6.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
5 | cdleml6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleml6.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdleml6.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | cdleml6.p | . . . . . 6 ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | |
9 | cdleml6.z | . . . . . 6 ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | |
10 | cdleml6.y | . . . . . 6 ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
11 | cdleml6.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | |
12 | cdleml6.u | . . . . . 6 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | |
13 | cdleml6.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
14 | cdleml6.o | . . . . . 6 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdleml6 40938 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
16 | 15 | 3adant2r 1179 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
17 | 16 | simpld 494 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) |
18 | simp3l 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | |
19 | 5, 13 | tendococl 40729 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) → (𝑈 ∘ 𝑠) ∈ 𝐸) |
20 | 1, 17, 18, 19 | syl3anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) ∈ 𝐸) |
21 | 5, 6, 13 | tendoidcl 40726 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
22 | 21 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ( I ↾ 𝑇) ∈ 𝐸) |
23 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdleml7 40939 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
24 | 23 | 3adant2r 1179 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
25 | simp2 1137 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) | |
26 | 2, 5, 6, 13 | tendocan 40781 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈 ∘ 𝑠) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸 ∧ ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
27 | 1, 20, 22, 24, 25, 26 | syl131anc 1383 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ifcif 4548 ↦ cmpt 5249 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 occoc 17319 joincjn 18381 meetcmee 18382 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 TEndoctendo 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 |
This theorem is referenced by: cdleml9 40941 erngdvlem4 40948 erngdvlem4-rN 40956 |
Copyright terms: Public domain | W3C validator |