Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml8 Structured version   Visualization version   GIF version

Theorem cdleml8 39449
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐡 = (Baseβ€˜πΎ)
cdleml6.j ∨ = (joinβ€˜πΎ)
cdleml6.m ∧ = (meetβ€˜πΎ)
cdleml6.h 𝐻 = (LHypβ€˜πΎ)
cdleml6.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdleml6.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdleml6.p 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
cdleml6.z 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
cdleml6.y π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdleml6.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
cdleml6.u π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
cdleml6.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
cdleml8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
Distinct variable groups:   𝑔,𝑏,𝑧, ∧   ∨ ,𝑏,𝑔,𝑧   𝐡,𝑏,𝑓,𝑔,𝑧   β„Ž,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝑔,𝑍
Allowed substitution hints:   𝐡(β„Ž,𝑠)   𝑄(𝑓,β„Ž,𝑠)   𝑅(𝑓,β„Ž,𝑠)   𝑇(β„Ž,𝑠)   π‘ˆ(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐻(𝑓,β„Ž,𝑠)   ∨ (𝑓,β„Ž,𝑠)   𝐾(𝑓,β„Ž,𝑠)   ∧ (𝑓,β„Ž,𝑠)   π‘Š(𝑓,β„Ž,𝑠)   𝑋(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   π‘Œ(𝑓,𝑔,β„Ž,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝑍(𝑧,𝑓,β„Ž,𝑠,𝑏)

Proof of Theorem cdleml8
StepHypRef Expression
1 simp1 1137 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 cdleml6.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
3 cdleml6.j . . . . . 6 ∨ = (joinβ€˜πΎ)
4 cdleml6.m . . . . . 6 ∧ = (meetβ€˜πΎ)
5 cdleml6.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
6 cdleml6.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
7 cdleml6.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
8 cdleml6.p . . . . . 6 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
9 cdleml6.z . . . . . 6 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
10 cdleml6.y . . . . . 6 π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
11 cdleml6.x . . . . . 6 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
12 cdleml6.u . . . . . 6 π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
13 cdleml6.e . . . . . 6 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
14 cdleml6.o . . . . . 6 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleml6 39447 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∈ 𝐸 ∧ (π‘ˆβ€˜(π‘ β€˜β„Ž)) = β„Ž))
16153adant2r 1180 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∈ 𝐸 ∧ (π‘ˆβ€˜(π‘ β€˜β„Ž)) = β„Ž))
1716simpld 496 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ ∈ 𝐸)
18 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ 𝑠 ∈ 𝐸)
195, 13tendococl 39238 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) β†’ (π‘ˆ ∘ 𝑠) ∈ 𝐸)
201, 17, 18, 19syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∘ 𝑠) ∈ 𝐸)
215, 6, 13tendoidcl 39235 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
22213ad2ant1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ( I β†Ύ 𝑇) ∈ 𝐸)
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleml7 39448 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (( I β†Ύ 𝑇)β€˜β„Ž))
24233adant2r 1180 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (( I β†Ύ 𝑇)β€˜β„Ž))
25 simp2 1138 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)))
262, 5, 6, 13tendocan 39290 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((π‘ˆ ∘ 𝑠) ∈ 𝐸 ∧ ( I β†Ύ 𝑇) ∈ 𝐸 ∧ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (( I β†Ύ 𝑇)β€˜β„Ž)) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
271, 20, 22, 24, 25, 26syl131anc 1384 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆ€wral 3065  ifcif 4487   ↦ cmpt 5189   I cid 5531  β—‘ccnv 5633   β†Ύ cres 5636   ∘ ccom 5638  β€˜cfv 6497  β„©crio 7313  (class class class)co 7358  Basecbs 17084  occoc 17142  joincjn 18201  meetcmee 18202  HLchlt 37815  LHypclh 38450  LTrncltrn 38567  trLctrl 38624  TEndoctendo 39218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-riotaBAD 37418
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-undef 8205  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-llines 37964  df-lplanes 37965  df-lvols 37966  df-lines 37967  df-psubsp 37969  df-pmap 37970  df-padd 38262  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625  df-tendo 39221
This theorem is referenced by:  cdleml9  39450  erngdvlem4  39457  erngdvlem4-rN  39465
  Copyright terms: Public domain W3C validator