![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml8 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
Ref | Expression |
---|---|
cdleml6.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml6.j | ⊢ ∨ = (join‘𝐾) |
cdleml6.m | ⊢ ∧ = (meet‘𝐾) |
cdleml6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml6.p | ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
cdleml6.z | ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
cdleml6.y | ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdleml6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
cdleml6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
cdleml6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml6.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml8 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdleml6.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleml6.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
4 | cdleml6.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
5 | cdleml6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleml6.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdleml6.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | cdleml6.p | . . . . . 6 ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | |
9 | cdleml6.z | . . . . . 6 ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | |
10 | cdleml6.y | . . . . . 6 ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
11 | cdleml6.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | |
12 | cdleml6.u | . . . . . 6 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | |
13 | cdleml6.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
14 | cdleml6.o | . . . . . 6 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdleml6 40964 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
16 | 15 | 3adant2r 1178 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
17 | 16 | simpld 494 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) |
18 | simp3l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | |
19 | 5, 13 | tendococl 40755 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) → (𝑈 ∘ 𝑠) ∈ 𝐸) |
20 | 1, 17, 18, 19 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) ∈ 𝐸) |
21 | 5, 6, 13 | tendoidcl 40752 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
22 | 21 | 3ad2ant1 1132 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ( I ↾ 𝑇) ∈ 𝐸) |
23 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdleml7 40965 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
24 | 23 | 3adant2r 1178 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
25 | simp2 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) | |
26 | 2, 5, 6, 13 | tendocan 40807 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈 ∘ 𝑠) ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸 ∧ ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
27 | 1, 20, 22, 24, 25, 26 | syl131anc 1382 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ifcif 4531 ↦ cmpt 5231 I cid 5582 ◡ccnv 5688 ↾ cres 5691 ∘ ccom 5693 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 occoc 17306 joincjn 18369 meetcmee 18370 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 trLctrl 40141 TEndoctendo 40735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-undef 8297 df-map 8867 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 |
This theorem is referenced by: cdleml9 40967 erngdvlem4 40974 erngdvlem4-rN 40982 |
Copyright terms: Public domain | W3C validator |