Proof of Theorem cdlemk8
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | coass 6285 | . . . . . 6
⊢ ((𝑋 ∘ ◡𝐺) ∘ 𝐺) = (𝑋 ∘ (◡𝐺 ∘ 𝐺)) | 
| 2 |  | simp1 1137 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 3 |  | simp2l 1200 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 4 |  | cdlemk.b | . . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐾) | 
| 5 |  | cdlemk.h | . . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) | 
| 6 |  | cdlemk.t | . . . . . . . . . . 11
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 7 | 4, 5, 6 | ltrn1o 40126 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) | 
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺:𝐵–1-1-onto→𝐵) | 
| 9 |  | f1ococnv1 6877 | . . . . . . . . 9
⊢ (𝐺:𝐵–1-1-onto→𝐵 → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) | 
| 10 | 8, 9 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) | 
| 11 | 10 | coeq2d 5873 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑋 ∘ (◡𝐺 ∘ 𝐺)) = (𝑋 ∘ ( I ↾ 𝐵))) | 
| 12 |  | simp2r 1201 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑋 ∈ 𝑇) | 
| 13 | 4, 5, 6 | ltrn1o 40126 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇) → 𝑋:𝐵–1-1-onto→𝐵) | 
| 14 | 2, 12, 13 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑋:𝐵–1-1-onto→𝐵) | 
| 15 |  | f1of 6848 | . . . . . . . 8
⊢ (𝑋:𝐵–1-1-onto→𝐵 → 𝑋:𝐵⟶𝐵) | 
| 16 |  | fcoi1 6782 | . . . . . . . 8
⊢ (𝑋:𝐵⟶𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋) | 
| 17 | 14, 15, 16 | 3syl 18 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋) | 
| 18 | 11, 17 | eqtrd 2777 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑋 ∘ (◡𝐺 ∘ 𝐺)) = 𝑋) | 
| 19 | 1, 18 | eqtrid 2789 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑋 ∘ ◡𝐺) ∘ 𝐺) = 𝑋) | 
| 20 | 19 | fveq1d 6908 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑋 ∘ ◡𝐺) ∘ 𝐺)‘𝑃) = (𝑋‘𝑃)) | 
| 21 | 5, 6 | ltrncnv 40148 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) | 
| 22 | 2, 3, 21 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ◡𝐺 ∈ 𝑇) | 
| 23 | 5, 6 | ltrnco 40721 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) | 
| 24 | 2, 12, 22, 23 | syl3anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) | 
| 25 |  | simp3l 1202 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | 
| 26 |  | cdlemk.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 27 |  | cdlemk.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 28 | 26, 27, 5, 6 | ltrncoval 40147 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∘ ◡𝐺) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (((𝑋 ∘ ◡𝐺) ∘ 𝐺)‘𝑃) = ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃))) | 
| 29 | 2, 24, 3, 25, 28 | syl121anc 1377 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑋 ∘ ◡𝐺) ∘ 𝐺)‘𝑃) = ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃))) | 
| 30 | 20, 29 | eqtr3d 2779 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑋‘𝑃) = ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃))) | 
| 31 | 30 | oveq2d 7447 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑋‘𝑃)) = ((𝐺‘𝑃) ∨ ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃)))) | 
| 32 | 26, 27, 5, 6 | ltrnel 40141 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 33 | 32 | 3adant2r 1180 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 34 |  | cdlemk.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 35 |  | cdlemk.r | . . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 36 | 26, 34, 27, 5, 6, 35 | trljat1 40168 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∘ ◡𝐺) ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))) = ((𝐺‘𝑃) ∨ ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃)))) | 
| 37 | 2, 24, 33, 36 | syl3anc 1373 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))) = ((𝐺‘𝑃) ∨ ((𝑋 ∘ ◡𝐺)‘(𝐺‘𝑃)))) | 
| 38 | 31, 37 | eqtr4d 2780 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∨ (𝑋‘𝑃)) = ((𝐺‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |