Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscm Structured version   Visualization version   GIF version

Theorem lincscm 46501
Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscm.s = ( ·𝑠𝑀)
lincscm.t · = (.r‘(Scalar‘𝑀))
lincscm.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincscm.r 𝑅 = (Base‘(Scalar‘𝑀))
lincscm.f 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
Assertion
Ref Expression
lincscm (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑉   𝑥, ·
Allowed substitution hints:   (𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem lincscm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2736 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscm.r . . 3 𝑅 = (Base‘(Scalar‘𝑀))
4 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
5 eqid 2736 . . 3 (+g𝑀) = (+g𝑀)
6 lincscm.s . . 3 = ( ·𝑠𝑀)
7 simp1l 1197 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑀 ∈ LMod)
8 simpr 485 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
983ad2ant1 1133 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
10 simpr 485 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆𝑅)
11103ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆𝑅)
127adantr 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
13 elmapi 8787 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
14 ffvelcdm 7032 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
1514ex 413 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1613, 15syl 17 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1716adantr 481 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
18173ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1918imp 407 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
20 elelpwi 4570 . . . . . . . 8 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
2120expcom 414 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2221adantl 482 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
23223ad2ant1 1133 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2423imp 407 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
25 eqid 2736 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
261, 2, 25, 3lmodvscl 20339 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀)) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
2712, 19, 24, 26syl3anc 1371 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
282, 3scmfsupp 46444 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
29283adant2r 1179 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
301, 2, 3, 4, 5, 6, 7, 9, 11, 27, 29gsumvsmul 20386 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
312lmodring 20330 . . . . . . . . . 10 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
3231adantr 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Ring)
33323ad2ant1 1133 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (Scalar‘𝑀) ∈ Ring)
3433adantr 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (Scalar‘𝑀) ∈ Ring)
353eleq2i 2829 . . . . . . . . . . 11 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3635biimpi 215 . . . . . . . . . 10 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3736adantl 482 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
38373ad2ant2 1134 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
3938adantr 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
40 ffvelcdm 7032 . . . . . . . . . . . . 13 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
4140, 3eleqtrdi 2848 . . . . . . . . . . . 12 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
4241ex 413 . . . . . . . . . . 11 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4313, 42syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4443adantr 481 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
45443ad2ant2 1134 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4645imp 407 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
47 eqid 2736 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
48 lincscm.t . . . . . . . 8 · = (.r‘(Scalar‘𝑀))
4947, 48ringcl 19981 . . . . . . 7 (((Scalar‘𝑀) ∈ Ring ∧ 𝑆 ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
5034, 39, 46, 49syl3anc 1371 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
51 lincscm.f . . . . . 6 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
5250, 51fmptd 7062 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
53 fvex 6855 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
54 elmapg 8778 . . . . . 6 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5553, 9, 54sylancr 587 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5652, 55mpbird 256 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
57 lincval 46480 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
587, 56, 9, 57syl3anc 1371 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
59 simpr 485 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣𝑉)
60 ovex 7390 . . . . . . . 8 (𝑆 · (𝐴𝑣)) ∈ V
61 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐴𝑥) = (𝐴𝑣))
6261oveq2d 7373 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑆 · (𝐴𝑥)) = (𝑆 · (𝐴𝑣)))
6362, 51fvmptg 6946 . . . . . . . 8 ((𝑣𝑉 ∧ (𝑆 · (𝐴𝑣)) ∈ V) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6459, 60, 63sylancl 586 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6564oveq1d 7372 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣))
6611adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑆𝑅)
671, 2, 25, 3, 48lmodvsass 20347 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆𝑅 ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀))) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
6812, 66, 19, 24, 67syl13anc 1372 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
696eqcomi 2745 . . . . . . . . 9 ( ·𝑠𝑀) =
7069a1i 11 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ( ·𝑠𝑀) = )
7170oveqd 7374 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7268, 71eqtrd 2776 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7365, 72eqtrd 2776 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7473mpteq2dva 5205 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
7574oveq2d 7373 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
7658, 75eqtrd 2776 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
77 lincscm.x . . . . 5 𝑋 = (𝐴( linC ‘𝑀)𝑉)
7877a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝐴( linC ‘𝑀)𝑉))
793oveq1i 7367 . . . . . . . . 9 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
8079eleq2i 2829 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8180biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8281adantr 481 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
83823ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
84 lincval 46480 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
857, 83, 9, 84syl3anc 1371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8678, 85eqtrd 2776 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8786oveq2d 7373 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
8830, 76, 873eqtr4rd 2787 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765   finSupp cfsupp 9305  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Ringcrg 19964  LModclmod 20322   linC clinc 46475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-linc 46477
This theorem is referenced by:  lincscmcl  46503
  Copyright terms: Public domain W3C validator