Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscm Structured version   Visualization version   GIF version

Theorem lincscm 45659
Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscm.s = ( ·𝑠𝑀)
lincscm.t · = (.r‘(Scalar‘𝑀))
lincscm.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincscm.r 𝑅 = (Base‘(Scalar‘𝑀))
lincscm.f 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
Assertion
Ref Expression
lincscm (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑉   𝑥, ·
Allowed substitution hints:   (𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem lincscm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscm.r . . 3 𝑅 = (Base‘(Scalar‘𝑀))
4 eqid 2738 . . 3 (0g𝑀) = (0g𝑀)
5 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
6 lincscm.s . . 3 = ( ·𝑠𝑀)
7 simp1l 1195 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑀 ∈ LMod)
8 simpr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
983ad2ant1 1131 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
10 simpr 484 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆𝑅)
11103ad2ant2 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆𝑅)
127adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
13 elmapi 8595 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
14 ffvelrn 6941 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
1514ex 412 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1613, 15syl 17 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1716adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
18173ad2ant2 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1918imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
20 elelpwi 4542 . . . . . . . 8 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
2120expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2221adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
23223ad2ant1 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2423imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
25 eqid 2738 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
261, 2, 25, 3lmodvscl 20055 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀)) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
2712, 19, 24, 26syl3anc 1369 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
282, 3scmfsupp 45602 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
29283adant2r 1177 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
301, 2, 3, 4, 5, 6, 7, 9, 11, 27, 29gsumvsmul 20102 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
312lmodring 20046 . . . . . . . . . 10 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
3231adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Ring)
33323ad2ant1 1131 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (Scalar‘𝑀) ∈ Ring)
3433adantr 480 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (Scalar‘𝑀) ∈ Ring)
353eleq2i 2830 . . . . . . . . . . 11 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3635biimpi 215 . . . . . . . . . 10 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3736adantl 481 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
38373ad2ant2 1132 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
3938adantr 480 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
40 ffvelrn 6941 . . . . . . . . . . . . 13 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
4140, 3eleqtrdi 2849 . . . . . . . . . . . 12 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
4241ex 412 . . . . . . . . . . 11 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4313, 42syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4443adantr 480 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
45443ad2ant2 1132 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4645imp 406 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
47 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
48 lincscm.t . . . . . . . 8 · = (.r‘(Scalar‘𝑀))
4947, 48ringcl 19715 . . . . . . 7 (((Scalar‘𝑀) ∈ Ring ∧ 𝑆 ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
5034, 39, 46, 49syl3anc 1369 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
51 lincscm.f . . . . . 6 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
5250, 51fmptd 6970 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
53 fvex 6769 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
54 elmapg 8586 . . . . . 6 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5553, 9, 54sylancr 586 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5652, 55mpbird 256 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
57 lincval 45638 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
587, 56, 9, 57syl3anc 1369 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
59 simpr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣𝑉)
60 ovex 7288 . . . . . . . 8 (𝑆 · (𝐴𝑣)) ∈ V
61 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐴𝑥) = (𝐴𝑣))
6261oveq2d 7271 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑆 · (𝐴𝑥)) = (𝑆 · (𝐴𝑣)))
6362, 51fvmptg 6855 . . . . . . . 8 ((𝑣𝑉 ∧ (𝑆 · (𝐴𝑣)) ∈ V) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6459, 60, 63sylancl 585 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6564oveq1d 7270 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣))
6611adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑆𝑅)
671, 2, 25, 3, 48lmodvsass 20063 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆𝑅 ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀))) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
6812, 66, 19, 24, 67syl13anc 1370 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
696eqcomi 2747 . . . . . . . . 9 ( ·𝑠𝑀) =
7069a1i 11 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ( ·𝑠𝑀) = )
7170oveqd 7272 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7268, 71eqtrd 2778 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7365, 72eqtrd 2778 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7473mpteq2dva 5170 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
7574oveq2d 7271 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
7658, 75eqtrd 2778 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
77 lincscm.x . . . . 5 𝑋 = (𝐴( linC ‘𝑀)𝑉)
7877a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝐴( linC ‘𝑀)𝑉))
793oveq1i 7265 . . . . . . . . 9 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
8079eleq2i 2830 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8180biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8281adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
83823ad2ant2 1132 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
84 lincval 45638 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
857, 83, 9, 84syl3anc 1369 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8678, 85eqtrd 2778 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8786oveq2d 7271 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
8830, 76, 873eqtr4rd 2789 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Ringcrg 19698  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-linc 45635
This theorem is referenced by:  lincscmcl  45661
  Copyright terms: Public domain W3C validator