Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscm Structured version   Visualization version   GIF version

Theorem lincscm 44492
Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscm.s = ( ·𝑠𝑀)
lincscm.t · = (.r‘(Scalar‘𝑀))
lincscm.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincscm.r 𝑅 = (Base‘(Scalar‘𝑀))
lincscm.f 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
Assertion
Ref Expression
lincscm (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑉   𝑥, ·
Allowed substitution hints:   (𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem lincscm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2823 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscm.r . . 3 𝑅 = (Base‘(Scalar‘𝑀))
4 eqid 2823 . . 3 (0g𝑀) = (0g𝑀)
5 eqid 2823 . . 3 (+g𝑀) = (+g𝑀)
6 lincscm.s . . 3 = ( ·𝑠𝑀)
7 simp1l 1193 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑀 ∈ LMod)
8 simpr 487 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
983ad2ant1 1129 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
10 simpr 487 . . . 4 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆𝑅)
11103ad2ant2 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆𝑅)
127adantr 483 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
13 elmapi 8430 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
14 ffvelrn 6851 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
1514ex 415 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1613, 15syl 17 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1716adantr 483 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
18173ad2ant2 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1918imp 409 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
20 elelpwi 4553 . . . . . . . 8 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
2120expcom 416 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2221adantl 484 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
23223ad2ant1 1129 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2423imp 409 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
25 eqid 2823 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
261, 2, 25, 3lmodvscl 19653 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀)) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
2712, 19, 24, 26syl3anc 1367 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
282, 3scmfsupp 44433 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
29283adant2r 1175 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
301, 2, 3, 4, 5, 6, 7, 9, 11, 27, 29gsumvsmul 19700 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
312lmodring 19644 . . . . . . . . . 10 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
3231adantr 483 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Ring)
33323ad2ant1 1129 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (Scalar‘𝑀) ∈ Ring)
3433adantr 483 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (Scalar‘𝑀) ∈ Ring)
353eleq2i 2906 . . . . . . . . . . 11 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3635biimpi 218 . . . . . . . . . 10 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3736adantl 484 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
38373ad2ant2 1130 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
3938adantr 483 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
40 ffvelrn 6851 . . . . . . . . . . . . 13 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
4140, 3eleqtrdi 2925 . . . . . . . . . . . 12 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
4241ex 415 . . . . . . . . . . 11 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4313, 42syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑅m 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4443adantr 483 . . . . . . . . 9 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
45443ad2ant2 1130 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4645imp 409 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
47 eqid 2823 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
48 lincscm.t . . . . . . . 8 · = (.r‘(Scalar‘𝑀))
4947, 48ringcl 19313 . . . . . . 7 (((Scalar‘𝑀) ∈ Ring ∧ 𝑆 ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
5034, 39, 46, 49syl3anc 1367 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
51 lincscm.f . . . . . 6 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
5250, 51fmptd 6880 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
53 fvex 6685 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
54 elmapg 8421 . . . . . 6 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5553, 9, 54sylancr 589 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5652, 55mpbird 259 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
57 lincval 44471 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
587, 56, 9, 57syl3anc 1367 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
59 simpr 487 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣𝑉)
60 ovex 7191 . . . . . . . 8 (𝑆 · (𝐴𝑣)) ∈ V
61 fveq2 6672 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐴𝑥) = (𝐴𝑣))
6261oveq2d 7174 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑆 · (𝐴𝑥)) = (𝑆 · (𝐴𝑣)))
6362, 51fvmptg 6768 . . . . . . . 8 ((𝑣𝑉 ∧ (𝑆 · (𝐴𝑣)) ∈ V) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6459, 60, 63sylancl 588 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6564oveq1d 7173 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣))
6611adantr 483 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑆𝑅)
671, 2, 25, 3, 48lmodvsass 19661 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆𝑅 ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀))) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
6812, 66, 19, 24, 67syl13anc 1368 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
696eqcomi 2832 . . . . . . . . 9 ( ·𝑠𝑀) =
7069a1i 11 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ( ·𝑠𝑀) = )
7170oveqd 7175 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7268, 71eqtrd 2858 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7365, 72eqtrd 2858 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7473mpteq2dva 5163 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
7574oveq2d 7174 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
7658, 75eqtrd 2858 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
77 lincscm.x . . . . 5 𝑋 = (𝐴( linC ‘𝑀)𝑉)
7877a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝐴( linC ‘𝑀)𝑉))
793oveq1i 7168 . . . . . . . . 9 (𝑅m 𝑉) = ((Base‘(Scalar‘𝑀)) ↑m 𝑉)
8079eleq2i 2906 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8180biimpi 218 . . . . . . 7 (𝐴 ∈ (𝑅m 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
8281adantr 483 . . . . . 6 ((𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
83823ad2ant2 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
84 lincval 44471 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
857, 83, 9, 84syl3anc 1367 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8678, 85eqtrd 2858 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8786oveq2d 7174 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
8830, 76, 873eqtr4rd 2869 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408   finSupp cfsupp 8835  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715   Σg cgsu 16716  Ringcrg 19299  LModclmod 19636   linC clinc 44466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-minusg 18109  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-linc 44468
This theorem is referenced by:  lincscmcl  44494
  Copyright terms: Public domain W3C validator