Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscm Structured version   Visualization version   GIF version

Theorem lincscm 47265
Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscm.s βˆ™ = ( ·𝑠 β€˜π‘€)
lincscm.t Β· = (.rβ€˜(Scalarβ€˜π‘€))
lincscm.x 𝑋 = (𝐴( linC β€˜π‘€)𝑉)
lincscm.r 𝑅 = (Baseβ€˜(Scalarβ€˜π‘€))
lincscm.f 𝐹 = (π‘₯ ∈ 𝑉 ↦ (𝑆 Β· (π΄β€˜π‘₯)))
Assertion
Ref Expression
lincscm (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑆 βˆ™ 𝑋) = (𝐹( linC β€˜π‘€)𝑉))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑀   π‘₯,𝑅   π‘₯,𝑆   π‘₯,𝑉   π‘₯, Β·
Allowed substitution hints:   βˆ™ (π‘₯)   𝐹(π‘₯)   𝑋(π‘₯)

Proof of Theorem lincscm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2724 . . 3 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
3 lincscm.r . . 3 𝑅 = (Baseβ€˜(Scalarβ€˜π‘€))
4 eqid 2724 . . 3 (0gβ€˜π‘€) = (0gβ€˜π‘€)
5 eqid 2724 . . 3 (+gβ€˜π‘€) = (+gβ€˜π‘€)
6 lincscm.s . . 3 βˆ™ = ( ·𝑠 β€˜π‘€)
7 simp1l 1194 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑀 ∈ LMod)
8 simpr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
983ad2ant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
10 simpr 484 . . . 4 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) β†’ 𝑆 ∈ 𝑅)
11103ad2ant2 1131 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑆 ∈ 𝑅)
127adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑀 ∈ LMod)
13 elmapi 8838 . . . . . . . 8 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ 𝐴:π‘‰βŸΆπ‘…)
14 ffvelcdm 7073 . . . . . . . . 9 ((𝐴:π‘‰βŸΆπ‘… ∧ 𝑣 ∈ 𝑉) β†’ (π΄β€˜π‘£) ∈ 𝑅)
1514ex 412 . . . . . . . 8 (𝐴:π‘‰βŸΆπ‘… β†’ (𝑣 ∈ 𝑉 β†’ (π΄β€˜π‘£) ∈ 𝑅))
1613, 15syl 17 . . . . . . 7 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ (𝑣 ∈ 𝑉 β†’ (π΄β€˜π‘£) ∈ 𝑅))
1716adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) β†’ (𝑣 ∈ 𝑉 β†’ (π΄β€˜π‘£) ∈ 𝑅))
18173ad2ant2 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 β†’ (π΄β€˜π‘£) ∈ 𝑅))
1918imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ (π΄β€˜π‘£) ∈ 𝑅)
20 elelpwi 4604 . . . . . . . 8 ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
2120expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 (Baseβ€˜π‘€) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
2221adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
23223ad2ant1 1130 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ (Baseβ€˜π‘€)))
2423imp 406 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ (Baseβ€˜π‘€))
25 eqid 2724 . . . . 5 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
261, 2, 25, 3lmodvscl 20709 . . . 4 ((𝑀 ∈ LMod ∧ (π΄β€˜π‘£) ∈ 𝑅 ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) ∈ (Baseβ€˜π‘€))
2712, 19, 24, 26syl3anc 1368 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) ∈ (Baseβ€˜π‘€))
282, 3scmfsupp 47209 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
29283adant2r 1176 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) finSupp (0gβ€˜π‘€))
301, 2, 3, 4, 5, 6, 7, 9, 11, 27, 29gsumvsmul 20757 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))) = (𝑆 βˆ™ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))))
312lmodring 20699 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ (Scalarβ€˜π‘€) ∈ Ring)
3231adantr 480 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (Scalarβ€˜π‘€) ∈ Ring)
33323ad2ant1 1130 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (Scalarβ€˜π‘€) ∈ Ring)
3433adantr 480 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ π‘₯ ∈ 𝑉) β†’ (Scalarβ€˜π‘€) ∈ Ring)
353eleq2i 2817 . . . . . . . . . . 11 (𝑆 ∈ 𝑅 ↔ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
3635biimpi 215 . . . . . . . . . 10 (𝑆 ∈ 𝑅 β†’ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
3736adantl 481 . . . . . . . . 9 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) β†’ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
38373ad2ant2 1131 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
3938adantr 480 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ π‘₯ ∈ 𝑉) β†’ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
40 ffvelcdm 7073 . . . . . . . . . . . . 13 ((𝐴:π‘‰βŸΆπ‘… ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ 𝑅)
4140, 3eleqtrdi 2835 . . . . . . . . . . . 12 ((𝐴:π‘‰βŸΆπ‘… ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
4241ex 412 . . . . . . . . . . 11 (𝐴:π‘‰βŸΆπ‘… β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
4313, 42syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
4443adantr 480 . . . . . . . . 9 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
45443ad2ant2 1131 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (π‘₯ ∈ 𝑉 β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
4645imp 406 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ π‘₯ ∈ 𝑉) β†’ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
47 eqid 2724 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
48 lincscm.t . . . . . . . 8 Β· = (.rβ€˜(Scalarβ€˜π‘€))
4947, 48ringcl 20140 . . . . . . 7 (((Scalarβ€˜π‘€) ∈ Ring ∧ 𝑆 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ (π΄β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜π‘€))) β†’ (𝑆 Β· (π΄β€˜π‘₯)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
5034, 39, 46, 49syl3anc 1368 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ π‘₯ ∈ 𝑉) β†’ (𝑆 Β· (π΄β€˜π‘₯)) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
51 lincscm.f . . . . . 6 𝐹 = (π‘₯ ∈ 𝑉 ↦ (𝑆 Β· (π΄β€˜π‘₯)))
5250, 51fmptd 7105 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
53 fvex 6894 . . . . . 6 (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V
54 elmapg 8828 . . . . . 6 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
5553, 9, 54sylancr 586 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
5652, 55mpbird 257 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
57 lincval 47244 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
587, 56, 9, 57syl3anc 1368 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
59 simpr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ 𝑉)
60 ovex 7434 . . . . . . . 8 (𝑆 Β· (π΄β€˜π‘£)) ∈ V
61 fveq2 6881 . . . . . . . . . 10 (π‘₯ = 𝑣 β†’ (π΄β€˜π‘₯) = (π΄β€˜π‘£))
6261oveq2d 7417 . . . . . . . . 9 (π‘₯ = 𝑣 β†’ (𝑆 Β· (π΄β€˜π‘₯)) = (𝑆 Β· (π΄β€˜π‘£)))
6362, 51fvmptg 6986 . . . . . . . 8 ((𝑣 ∈ 𝑉 ∧ (𝑆 Β· (π΄β€˜π‘£)) ∈ V) β†’ (πΉβ€˜π‘£) = (𝑆 Β· (π΄β€˜π‘£)))
6459, 60, 63sylancl 585 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ (πΉβ€˜π‘£) = (𝑆 Β· (π΄β€˜π‘£)))
6564oveq1d 7416 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = ((𝑆 Β· (π΄β€˜π‘£))( ·𝑠 β€˜π‘€)𝑣))
6611adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ 𝑆 ∈ 𝑅)
671, 2, 25, 3, 48lmodvsass 20718 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∈ 𝑅 ∧ (π΄β€˜π‘£) ∈ 𝑅 ∧ 𝑣 ∈ (Baseβ€˜π‘€))) β†’ ((𝑆 Β· (π΄β€˜π‘£))( ·𝑠 β€˜π‘€)𝑣) = (𝑆( ·𝑠 β€˜π‘€)((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
6812, 66, 19, 24, 67syl13anc 1369 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ((𝑆 Β· (π΄β€˜π‘£))( ·𝑠 β€˜π‘€)𝑣) = (𝑆( ·𝑠 β€˜π‘€)((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
696eqcomi 2733 . . . . . . . . 9 ( ·𝑠 β€˜π‘€) = βˆ™
7069a1i 11 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ( ·𝑠 β€˜π‘€) = βˆ™ )
7170oveqd 7418 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ (𝑆( ·𝑠 β€˜π‘€)((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) = (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
7268, 71eqtrd 2764 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ((𝑆 Β· (π΄β€˜π‘£))( ·𝑠 β€˜π‘€)𝑣) = (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
7365, 72eqtrd 2764 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) ∧ 𝑣 ∈ 𝑉) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))
7473mpteq2dva 5238 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)) = (𝑣 ∈ 𝑉 ↦ (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
7574oveq2d 7417 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))))
7658, 75eqtrd 2764 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ (𝑆 βˆ™ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))))
77 lincscm.x . . . . 5 𝑋 = (𝐴( linC β€˜π‘€)𝑉)
7877a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑋 = (𝐴( linC β€˜π‘€)𝑉))
793oveq1i 7411 . . . . . . . . 9 (𝑅 ↑m 𝑉) = ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)
8079eleq2i 2817 . . . . . . . 8 (𝐴 ∈ (𝑅 ↑m 𝑉) ↔ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
8180biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑅 ↑m 𝑉) β†’ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
8281adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) β†’ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
83823ad2ant2 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
84 lincval 47244 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐴( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
857, 83, 9, 84syl3anc 1368 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝐴( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
8678, 85eqtrd 2764 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ 𝑋 = (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))))
8786oveq2d 7417 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑆 βˆ™ 𝑋) = (𝑆 βˆ™ (𝑀 Ξ£g (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)( ·𝑠 β€˜π‘€)𝑣)))))
8830, 76, 873eqtr4rd 2775 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑆 βˆ™ 𝑋) = (𝐹( linC β€˜π‘€)𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466  π’« cpw 4594   class class class wbr 5138   ↦ cmpt 5221  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ↑m cmap 8815   finSupp cfsupp 9356  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381   Ξ£g cgsu 17382  Ringcrg 20123  LModclmod 20691   linC clinc 47239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-grp 18853  df-minusg 18854  df-ghm 19124  df-cntz 19218  df-cmn 19687  df-abl 19688  df-mgp 20025  df-ur 20072  df-ring 20125  df-lmod 20693  df-linc 47241
This theorem is referenced by:  lincscmcl  47267
  Copyright terms: Public domain W3C validator