MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Visualization version   GIF version

Theorem divalglem8 16437
Description: Lemma for divalg 16440. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem8 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝐾(𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem divalglem8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4082 . . . . . . . . . . . 12 𝑆 ⊆ ℕ0
3 nn0sscn 12531 . . . . . . . . . . . 12 0 ⊆ ℂ
42, 3sstri 3993 . . . . . . . . . . 11 𝑆 ⊆ ℂ
54sseli 3979 . . . . . . . . . 10 (𝑌𝑆𝑌 ∈ ℂ)
64sseli 3979 . . . . . . . . . 10 (𝑋𝑆𝑋 ∈ ℂ)
7 divalglem8.2 . . . . . . . . . . . . . 14 𝐷 ∈ ℤ
8 divalglem8.3 . . . . . . . . . . . . . 14 𝐷 ≠ 0
9 nnabscl 15364 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
107, 8, 9mp2an 692 . . . . . . . . . . . . 13 (abs‘𝐷) ∈ ℕ
1110nnzi 12641 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℤ
12 zmulcl 12666 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1311, 12mpan2 691 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1413zcnd 12723 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
15 subadd 11511 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
165, 6, 14, 15syl3an 1161 . . . . . . . . 9 ((𝑌𝑆𝑋𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
17163com12 1124 . . . . . . . 8 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
18 eqcom 2744 . . . . . . . 8 ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝐾 · (abs‘𝐷)) = (𝑌𝑋))
19 eqcom 2744 . . . . . . . 8 ((𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))
2017, 18, 193bitr3g 313 . . . . . . 7 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
21203adant1r 1178 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
22213adant2r 1180 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
23 breq1 5146 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 < (abs‘𝐷) ↔ 𝑌 < (abs‘𝐷)))
24 eleq1 2829 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑌 ∈ (0...((abs‘𝐷) − 1))))
2523, 24imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1)))))
262sseli 3979 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝑧 ∈ ℕ0)
27 elnn0z 12626 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0 ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2826, 27sylib 218 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2928anim1i 615 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑧 < (abs‘𝐷)) → ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
30 df-3an 1089 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)) ↔ ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
3129, 30sylibr 234 . . . . . . . . . . . . 13 ((𝑧𝑆𝑧 < (abs‘𝐷)) → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
32 0z 12624 . . . . . . . . . . . . . 14 0 ∈ ℤ
33 elfzm11 13635 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷))))
3432, 11, 33mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
3531, 34sylibr 234 . . . . . . . . . . . 12 ((𝑧𝑆𝑧 < (abs‘𝐷)) → 𝑧 ∈ (0...((abs‘𝐷) − 1)))
3635ex 412 . . . . . . . . . . 11 (𝑧𝑆 → (𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))))
3725, 36vtoclga 3577 . . . . . . . . . 10 (𝑌𝑆 → (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1))))
38 eleq1 2829 . . . . . . . . . . 11 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
3938biimpd 229 . . . . . . . . . 10 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4037, 39sylan9 507 . . . . . . . . 9 ((𝑌𝑆𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) → (𝑌 < (abs‘𝐷) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4140impancom 451 . . . . . . . 8 ((𝑌𝑆𝑌 < (abs‘𝐷)) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
42413ad2ant2 1135 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43 breq1 5146 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 < (abs‘𝐷) ↔ 𝑋 < (abs‘𝐷)))
44 eleq1 2829 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4543, 44imbi12d 344 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))))
4645, 36vtoclga 3577 . . . . . . . . . . 11 (𝑋𝑆 → (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4746imp 406 . . . . . . . . . 10 ((𝑋𝑆𝑋 < (abs‘𝐷)) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))
487, 8divalglem7 16436 . . . . . . . . . 10 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4947, 48sylan 580 . . . . . . . . 9 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
50493adant2 1132 . . . . . . . 8 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
5150con2d 134 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) → ¬ 𝐾 ≠ 0))
5242, 51syld 47 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → ¬ 𝐾 ≠ 0))
53 df-ne 2941 . . . . . . 7 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
5453con2bii 357 . . . . . 6 (𝐾 = 0 ↔ ¬ 𝐾 ≠ 0)
5552, 54imbitrrdi 252 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → 𝐾 = 0))
5622, 55sylbid 240 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝐾 = 0))
57 oveq1 7438 . . . . . . . . . . 11 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = (0 · (abs‘𝐷)))
5810nncni 12276 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℂ
5958mul02i 11450 . . . . . . . . . . 11 (0 · (abs‘𝐷)) = 0
6057, 59eqtrdi 2793 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = 0)
6160eqeq1d 2739 . . . . . . . . 9 (𝐾 = 0 → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 0 = (𝑌𝑋)))
6261biimpac 478 . . . . . . . 8 (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 0 = (𝑌𝑋))
63 subeq0 11535 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
645, 6, 63syl2anr 597 . . . . . . . . 9 ((𝑋𝑆𝑌𝑆) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
65 eqcom 2744 . . . . . . . . 9 ((𝑌𝑋) = 0 ↔ 0 = (𝑌𝑋))
66 eqcom 2744 . . . . . . . . 9 (𝑌 = 𝑋𝑋 = 𝑌)
6764, 65, 663bitr3g 313 . . . . . . . 8 ((𝑋𝑆𝑌𝑆) → (0 = (𝑌𝑋) ↔ 𝑋 = 𝑌))
6862, 67imbitrid 244 . . . . . . 7 ((𝑋𝑆𝑌𝑆) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
6968ad2ant2r 747 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
70693adant3 1133 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
7170expd 415 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → (𝐾 = 0 → 𝑋 = 𝑌)))
7256, 71mpdd 43 . . 3 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌))
73723expia 1122 . 2 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
7473an4s 660 1 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  abscabs 15273  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  divalglem9  16438
  Copyright terms: Public domain W3C validator