MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Visualization version   GIF version

Theorem divalglem8 16037
Description: Lemma for divalg 16040. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem8 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝐾(𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem divalglem8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4011 . . . . . . . . . . . 12 𝑆 ⊆ ℕ0
3 nn0sscn 12168 . . . . . . . . . . . 12 0 ⊆ ℂ
42, 3sstri 3926 . . . . . . . . . . 11 𝑆 ⊆ ℂ
54sseli 3913 . . . . . . . . . 10 (𝑌𝑆𝑌 ∈ ℂ)
64sseli 3913 . . . . . . . . . 10 (𝑋𝑆𝑋 ∈ ℂ)
7 divalglem8.2 . . . . . . . . . . . . . 14 𝐷 ∈ ℤ
8 divalglem8.3 . . . . . . . . . . . . . 14 𝐷 ≠ 0
9 nnabscl 14965 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
107, 8, 9mp2an 688 . . . . . . . . . . . . 13 (abs‘𝐷) ∈ ℕ
1110nnzi 12274 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℤ
12 zmulcl 12299 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1311, 12mpan2 687 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1413zcnd 12356 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
15 subadd 11154 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
165, 6, 14, 15syl3an 1158 . . . . . . . . 9 ((𝑌𝑆𝑋𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
17163com12 1121 . . . . . . . 8 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
18 eqcom 2745 . . . . . . . 8 ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝐾 · (abs‘𝐷)) = (𝑌𝑋))
19 eqcom 2745 . . . . . . . 8 ((𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))
2017, 18, 193bitr3g 312 . . . . . . 7 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
21203adant1r 1175 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
22213adant2r 1177 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
23 breq1 5073 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 < (abs‘𝐷) ↔ 𝑌 < (abs‘𝐷)))
24 eleq1 2826 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑌 ∈ (0...((abs‘𝐷) − 1))))
2523, 24imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1)))))
262sseli 3913 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝑧 ∈ ℕ0)
27 elnn0z 12262 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0 ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2826, 27sylib 217 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2928anim1i 614 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑧 < (abs‘𝐷)) → ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
30 df-3an 1087 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)) ↔ ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
3129, 30sylibr 233 . . . . . . . . . . . . 13 ((𝑧𝑆𝑧 < (abs‘𝐷)) → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
32 0z 12260 . . . . . . . . . . . . . 14 0 ∈ ℤ
33 elfzm11 13256 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷))))
3432, 11, 33mp2an 688 . . . . . . . . . . . . 13 (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
3531, 34sylibr 233 . . . . . . . . . . . 12 ((𝑧𝑆𝑧 < (abs‘𝐷)) → 𝑧 ∈ (0...((abs‘𝐷) − 1)))
3635ex 412 . . . . . . . . . . 11 (𝑧𝑆 → (𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))))
3725, 36vtoclga 3503 . . . . . . . . . 10 (𝑌𝑆 → (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1))))
38 eleq1 2826 . . . . . . . . . . 11 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
3938biimpd 228 . . . . . . . . . 10 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4037, 39sylan9 507 . . . . . . . . 9 ((𝑌𝑆𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) → (𝑌 < (abs‘𝐷) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4140impancom 451 . . . . . . . 8 ((𝑌𝑆𝑌 < (abs‘𝐷)) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
42413ad2ant2 1132 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43 breq1 5073 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 < (abs‘𝐷) ↔ 𝑋 < (abs‘𝐷)))
44 eleq1 2826 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4543, 44imbi12d 344 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))))
4645, 36vtoclga 3503 . . . . . . . . . . 11 (𝑋𝑆 → (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4746imp 406 . . . . . . . . . 10 ((𝑋𝑆𝑋 < (abs‘𝐷)) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))
487, 8divalglem7 16036 . . . . . . . . . 10 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4947, 48sylan 579 . . . . . . . . 9 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
50493adant2 1129 . . . . . . . 8 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
5150con2d 134 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) → ¬ 𝐾 ≠ 0))
5242, 51syld 47 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → ¬ 𝐾 ≠ 0))
53 df-ne 2943 . . . . . . 7 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
5453con2bii 357 . . . . . 6 (𝐾 = 0 ↔ ¬ 𝐾 ≠ 0)
5552, 54syl6ibr 251 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → 𝐾 = 0))
5622, 55sylbid 239 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝐾 = 0))
57 oveq1 7262 . . . . . . . . . . 11 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = (0 · (abs‘𝐷)))
5810nncni 11913 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℂ
5958mul02i 11094 . . . . . . . . . . 11 (0 · (abs‘𝐷)) = 0
6057, 59eqtrdi 2795 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = 0)
6160eqeq1d 2740 . . . . . . . . 9 (𝐾 = 0 → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 0 = (𝑌𝑋)))
6261biimpac 478 . . . . . . . 8 (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 0 = (𝑌𝑋))
63 subeq0 11177 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
645, 6, 63syl2anr 596 . . . . . . . . 9 ((𝑋𝑆𝑌𝑆) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
65 eqcom 2745 . . . . . . . . 9 ((𝑌𝑋) = 0 ↔ 0 = (𝑌𝑋))
66 eqcom 2745 . . . . . . . . 9 (𝑌 = 𝑋𝑋 = 𝑌)
6764, 65, 663bitr3g 312 . . . . . . . 8 ((𝑋𝑆𝑌𝑆) → (0 = (𝑌𝑋) ↔ 𝑋 = 𝑌))
6862, 67syl5ib 243 . . . . . . 7 ((𝑋𝑆𝑌𝑆) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
6968ad2ant2r 743 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
70693adant3 1130 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
7170expd 415 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → (𝐾 = 0 → 𝑋 = 𝑌)))
7256, 71mpdd 43 . . 3 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌))
73723expia 1119 . 2 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
7473an4s 656 1 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  abscabs 14873  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  divalglem9  16038
  Copyright terms: Public domain W3C validator