MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Visualization version   GIF version

Theorem divalglem8 15407
Description: Lemma for divalg 15410. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem8 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑆(𝑟)   𝐾(𝑟)   𝑋(𝑟)   𝑌(𝑟)

Proof of Theorem divalglem8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
2 ssrab2 3847 . . . . . . . . . . . . 13 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} ⊆ ℕ0
31, 2eqsstri 3795 . . . . . . . . . . . 12 𝑆 ⊆ ℕ0
4 nn0sscn 11543 . . . . . . . . . . . 12 0 ⊆ ℂ
53, 4sstri 3770 . . . . . . . . . . 11 𝑆 ⊆ ℂ
65sseli 3757 . . . . . . . . . 10 (𝑌𝑆𝑌 ∈ ℂ)
75sseli 3757 . . . . . . . . . 10 (𝑋𝑆𝑋 ∈ ℂ)
8 divalglem8.2 . . . . . . . . . . . . . 14 𝐷 ∈ ℤ
9 divalglem8.3 . . . . . . . . . . . . . 14 𝐷 ≠ 0
10 nnabscl 14352 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
118, 9, 10mp2an 683 . . . . . . . . . . . . 13 (abs‘𝐷) ∈ ℕ
1211nnzi 11648 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℤ
13 zmulcl 11673 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1412, 13mpan2 682 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ)
1514zcnd 11730 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ)
16 subadd 10538 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
176, 7, 15, 16syl3an 1199 . . . . . . . . 9 ((𝑌𝑆𝑋𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
18173com12 1153 . . . . . . . 8 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌))
19 eqcom 2772 . . . . . . . 8 ((𝑌𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝐾 · (abs‘𝐷)) = (𝑌𝑋))
20 eqcom 2772 . . . . . . . 8 ((𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))
2118, 19, 203bitr3g 304 . . . . . . 7 ((𝑋𝑆𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
22213adant1r 1223 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝑌𝑆𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
23223adant2r 1227 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))))
24 breq1 4812 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 < (abs‘𝐷) ↔ 𝑌 < (abs‘𝐷)))
25 eleq1 2832 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑌 ∈ (0...((abs‘𝐷) − 1))))
2624, 25imbi12d 335 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1)))))
273sseli 3757 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝑧 ∈ ℕ0)
28 elnn0z 11637 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0 ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
2927, 28sylib 209 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧))
3029anim1i 608 . . . . . . . . . . . . . 14 ((𝑧𝑆𝑧 < (abs‘𝐷)) → ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
31 df-3an 1109 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)) ↔ ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷)))
3230, 31sylibr 225 . . . . . . . . . . . . 13 ((𝑧𝑆𝑧 < (abs‘𝐷)) → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
33 0z 11635 . . . . . . . . . . . . . 14 0 ∈ ℤ
34 elfzm11 12618 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷))))
3533, 12, 34mp2an 683 . . . . . . . . . . . . 13 (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧𝑧 < (abs‘𝐷)))
3632, 35sylibr 225 . . . . . . . . . . . 12 ((𝑧𝑆𝑧 < (abs‘𝐷)) → 𝑧 ∈ (0...((abs‘𝐷) − 1)))
3736ex 401 . . . . . . . . . . 11 (𝑧𝑆 → (𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))))
3826, 37vtoclga 3424 . . . . . . . . . 10 (𝑌𝑆 → (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1))))
39 eleq1 2832 . . . . . . . . . . 11 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4039biimpd 220 . . . . . . . . . 10 (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4138, 40sylan9 503 . . . . . . . . 9 ((𝑌𝑆𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) → (𝑌 < (abs‘𝐷) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
4241impancom 443 . . . . . . . 8 ((𝑌𝑆𝑌 < (abs‘𝐷)) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
43423ad2ant2 1164 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
44 breq1 4812 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 < (abs‘𝐷) ↔ 𝑋 < (abs‘𝐷)))
45 eleq1 2832 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4644, 45imbi12d 335 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))))
4746, 37vtoclga 3424 . . . . . . . . . . 11 (𝑋𝑆 → (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1))))
4847imp 395 . . . . . . . . . 10 ((𝑋𝑆𝑋 < (abs‘𝐷)) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))
498, 9divalglem7 15406 . . . . . . . . . 10 ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
5048, 49sylan 575 . . . . . . . . 9 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
51503adant2 1161 . . . . . . . 8 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1))))
5251con2d 131 . . . . . . 7 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) → ¬ 𝐾 ≠ 0))
5343, 52syld 47 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → ¬ 𝐾 ≠ 0))
54 df-ne 2938 . . . . . . 7 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
5554con2bii 348 . . . . . 6 (𝐾 = 0 ↔ ¬ 𝐾 ≠ 0)
5653, 55syl6ibr 243 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → 𝐾 = 0))
5723, 56sylbid 231 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝐾 = 0))
58 oveq1 6849 . . . . . . . . . . 11 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = (0 · (abs‘𝐷)))
5911nncni 11285 . . . . . . . . . . . 12 (abs‘𝐷) ∈ ℂ
6059mul02i 10479 . . . . . . . . . . 11 (0 · (abs‘𝐷)) = 0
6158, 60syl6eq 2815 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = 0)
6261eqeq1d 2767 . . . . . . . . 9 (𝐾 = 0 → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ↔ 0 = (𝑌𝑋)))
6362biimpac 470 . . . . . . . 8 (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 0 = (𝑌𝑋))
64 subeq0 10561 . . . . . . . . . 10 ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
656, 7, 64syl2anr 590 . . . . . . . . 9 ((𝑋𝑆𝑌𝑆) → ((𝑌𝑋) = 0 ↔ 𝑌 = 𝑋))
66 eqcom 2772 . . . . . . . . 9 ((𝑌𝑋) = 0 ↔ 0 = (𝑌𝑋))
67 eqcom 2772 . . . . . . . . 9 (𝑌 = 𝑋𝑋 = 𝑌)
6865, 66, 673bitr3g 304 . . . . . . . 8 ((𝑋𝑆𝑌𝑆) → (0 = (𝑌𝑋) ↔ 𝑋 = 𝑌))
6963, 68syl5ib 235 . . . . . . 7 ((𝑋𝑆𝑌𝑆) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
7069ad2ant2r 753 . . . . . 6 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
71703adant3 1162 . . . . 5 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (((𝐾 · (abs‘𝐷)) = (𝑌𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌))
7271expd 404 . . . 4 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → (𝐾 = 0 → 𝑋 = 𝑌)))
7357, 72mpdd 43 . . 3 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌))
74733expia 1150 . 2 (((𝑋𝑆𝑋 < (abs‘𝐷)) ∧ (𝑌𝑆𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
7574an4s 650 1 (((𝑋𝑆𝑌𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌𝑋) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  {crab 3059   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  ...cfz 12533  abscabs 14261  cdvds 15267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263
This theorem is referenced by:  divalglem9  15408
  Copyright terms: Public domain W3C validator