Step | Hyp | Ref
| Expression |
1 | | divalglem8.4 |
. . . . . . . . . . . . 13
⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
2 | 1 | ssrab3 4015 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆
ℕ0 |
3 | | nn0sscn 12238 |
. . . . . . . . . . . 12
⊢
ℕ0 ⊆ ℂ |
4 | 2, 3 | sstri 3930 |
. . . . . . . . . . 11
⊢ 𝑆 ⊆
ℂ |
5 | 4 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑆 → 𝑌 ∈ ℂ) |
6 | 4 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ ℂ) |
7 | | divalglem8.2 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ∈ ℤ |
8 | | divalglem8.3 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ≠ 0 |
9 | | nnabscl 15037 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈
ℕ) |
10 | 7, 8, 9 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
(abs‘𝐷) ∈
ℕ |
11 | 10 | nnzi 12344 |
. . . . . . . . . . . 12
⊢
(abs‘𝐷) ∈
ℤ |
12 | | zmulcl 12369 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℤ ∧
(abs‘𝐷) ∈
ℤ) → (𝐾 ·
(abs‘𝐷)) ∈
ℤ) |
13 | 11, 12 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈
ℤ) |
14 | 13 | zcnd 12427 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈
ℂ) |
15 | | subadd 11224 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) →
((𝑌 − 𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌)) |
16 | 5, 6, 14, 15 | syl3an 1159 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆 ∧ 𝐾 ∈ ℤ) → ((𝑌 − 𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌)) |
17 | 16 | 3com12 1122 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ) → ((𝑌 − 𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌)) |
18 | | eqcom 2745 |
. . . . . . . 8
⊢ ((𝑌 − 𝑋) = (𝐾 · (abs‘𝐷)) ↔ (𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋)) |
19 | | eqcom 2745 |
. . . . . . . 8
⊢ ((𝑋 + (𝐾 · (abs‘𝐷))) = 𝑌 ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) |
20 | 17, 18, 19 | 3bitr3g 313 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))) |
21 | 20 | 3adant1r 1176 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ 𝑌 ∈ 𝑆 ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))) |
22 | 21 | 3adant2r 1178 |
. . . . 5
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ↔ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))))) |
23 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑌 → (𝑧 < (abs‘𝐷) ↔ 𝑌 < (abs‘𝐷))) |
24 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑌 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑌 ∈ (0...((abs‘𝐷) − 1)))) |
25 | 23, 24 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑌 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1))))) |
26 | 2 | sseli 3917 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ℕ0) |
27 | | elnn0z 12332 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ0
↔ (𝑧 ∈ ℤ
∧ 0 ≤ 𝑧)) |
28 | 26, 27 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧)) |
29 | 28 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑧 < (abs‘𝐷)) → ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷))) |
30 | | df-3an 1088 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 0 ≤
𝑧 ∧ 𝑧 < (abs‘𝐷)) ↔ ((𝑧 ∈ ℤ ∧ 0 ≤ 𝑧) ∧ 𝑧 < (abs‘𝐷))) |
31 | 29, 30 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑧 < (abs‘𝐷)) → (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < (abs‘𝐷))) |
32 | | 0z 12330 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
33 | | elfzm11 13327 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤ 𝑧 ∧ 𝑧 < (abs‘𝐷)))) |
34 | 32, 11, 33 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑧 ∈ ℤ ∧ 0 ≤
𝑧 ∧ 𝑧 < (abs‘𝐷))) |
35 | 31, 34 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑆 ∧ 𝑧 < (abs‘𝐷)) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) |
36 | 35 | ex 413 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑆 → (𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1)))) |
37 | 25, 36 | vtoclga 3513 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑆 → (𝑌 < (abs‘𝐷) → 𝑌 ∈ (0...((abs‘𝐷) − 1)))) |
38 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) ↔ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
39 | 38 | biimpd 228 |
. . . . . . . . . 10
⊢ (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑌 ∈ (0...((abs‘𝐷) − 1)) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
40 | 37, 39 | sylan9 508 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝑆 ∧ 𝑌 = (𝑋 + (𝐾 · (abs‘𝐷)))) → (𝑌 < (abs‘𝐷) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
41 | 40 | impancom 452 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
42 | 41 | 3ad2ant2 1133 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
43 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → (𝑧 < (abs‘𝐷) ↔ 𝑋 < (abs‘𝐷))) |
44 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → (𝑧 ∈ (0...((abs‘𝐷) − 1)) ↔ 𝑋 ∈ (0...((abs‘𝐷) − 1)))) |
45 | 43, 44 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑋 → ((𝑧 < (abs‘𝐷) → 𝑧 ∈ (0...((abs‘𝐷) − 1))) ↔ (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1))))) |
46 | 45, 36 | vtoclga 3513 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑆 → (𝑋 < (abs‘𝐷) → 𝑋 ∈ (0...((abs‘𝐷) − 1)))) |
47 | 46 | imp 407 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) → 𝑋 ∈ (0...((abs‘𝐷) − 1))) |
48 | 7, 8 | divalglem7 16108 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
49 | 47, 48 | sylan 580 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
50 | 49 | 3adant2 1130 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) |
51 | 50 | con2d 134 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)) → ¬ 𝐾 ≠ 0)) |
52 | 42, 51 | syld 47 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → ¬ 𝐾 ≠ 0)) |
53 | | df-ne 2944 |
. . . . . . 7
⊢ (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0) |
54 | 53 | con2bii 358 |
. . . . . 6
⊢ (𝐾 = 0 ↔ ¬ 𝐾 ≠ 0) |
55 | 52, 54 | syl6ibr 251 |
. . . . 5
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (𝑌 = (𝑋 + (𝐾 · (abs‘𝐷))) → 𝐾 = 0)) |
56 | 22, 55 | sylbid 239 |
. . . 4
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝐾 = 0)) |
57 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = (0 · (abs‘𝐷))) |
58 | 10 | nncni 11983 |
. . . . . . . . . . . 12
⊢
(abs‘𝐷) ∈
ℂ |
59 | 58 | mul02i 11164 |
. . . . . . . . . . 11
⊢ (0
· (abs‘𝐷)) =
0 |
60 | 57, 59 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝐾 = 0 → (𝐾 · (abs‘𝐷)) = 0) |
61 | 60 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝐾 = 0 → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ↔ 0 = (𝑌 − 𝑋))) |
62 | 61 | biimpac 479 |
. . . . . . . 8
⊢ (((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ∧ 𝐾 = 0) → 0 = (𝑌 − 𝑋)) |
63 | | subeq0 11247 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑌 − 𝑋) = 0 ↔ 𝑌 = 𝑋)) |
64 | 5, 6, 63 | syl2anr 597 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑌 − 𝑋) = 0 ↔ 𝑌 = 𝑋)) |
65 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝑌 − 𝑋) = 0 ↔ 0 = (𝑌 − 𝑋)) |
66 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑌 = 𝑋 ↔ 𝑋 = 𝑌) |
67 | 64, 65, 66 | 3bitr3g 313 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (0 = (𝑌 − 𝑋) ↔ 𝑋 = 𝑌)) |
68 | 62, 67 | syl5ib 243 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌)) |
69 | 68 | ad2ant2r 744 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷))) → (((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌)) |
70 | 69 | 3adant3 1131 |
. . . . 5
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → (((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) ∧ 𝐾 = 0) → 𝑋 = 𝑌)) |
71 | 70 | expd 416 |
. . . 4
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → (𝐾 = 0 → 𝑋 = 𝑌))) |
72 | 56, 71 | mpdd 43 |
. . 3
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷)) ∧ 𝐾 ∈ ℤ) → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝑋 = 𝑌)) |
73 | 72 | 3expia 1120 |
. 2
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑋 < (abs‘𝐷)) ∧ (𝑌 ∈ 𝑆 ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝑋 = 𝑌))) |
74 | 73 | an4s 657 |
1
⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝑋 = 𝑌))) |