Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Structured version   Visualization version   GIF version

Theorem trlcoabs2N 40723
Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l = (le‘𝐾)
trlcoabs.j = (join‘𝐾)
trlcoabs.a 𝐴 = (Atoms‘𝐾)
trlcoabs.h 𝐻 = (LHyp‘𝐾)
trlcoabs.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoabs.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoabs2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
3 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 trlcoabs.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 trlcoabs.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 40147 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
71, 3, 6syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
84, 5ltrnco 40720 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
91, 2, 7, 8syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐹) ∈ 𝑇)
10 trlcoabs.l . . . . . 6 = (le‘𝐾)
11 trlcoabs.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrnel 40140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
13123adant2r 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
14 trlcoabs.j . . . . 5 = (join‘𝐾)
15 eqid 2730 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
16 trlcoabs.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1710, 14, 15, 11, 4, 5, 16trlval2 40164 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
181, 9, 13, 17syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
1918oveq2d 7406 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)))
20 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2210, 11, 4, 5ltrnat 40141 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
231, 3, 21, 22syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
2410, 11, 4, 5ltrnat 40141 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ (𝐹𝑃) ∈ 𝐴) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
251, 9, 23, 24syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
26 eqid 2730 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2726, 14, 11hlatjcl 39367 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
2820, 23, 25, 27syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
29 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
3026, 4lhpbase 39999 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3129, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
3210, 14, 11hlatlej1 39375 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3320, 23, 25, 32syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3426, 10, 14, 15, 11atmod3i1 39865 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3520, 23, 28, 31, 33, 34syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3610, 11, 4, 5ltrncoval 40146 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
371, 9, 3, 21, 36syl121anc 1377 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
38 coass 6241 . . . . . . . 8 ((𝐺𝐹) ∘ 𝐹) = (𝐺 ∘ (𝐹𝐹))
3926, 4, 5ltrn1o 40125 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
401, 3, 39syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
41 f1ococnv1 6832 . . . . . . . . . . 11 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4240, 41syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4342coeq2d 5829 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = (𝐺 ∘ ( I ↾ (Base‘𝐾))))
4426, 4, 5ltrn1o 40125 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 2, 44syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6803 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi1 6737 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4845, 46, 473syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4943, 48eqtrd 2765 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = 𝐺)
5038, 49eqtrid 2777 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹) ∘ 𝐹) = 𝐺)
5150fveq1d 6863 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = (𝐺𝑃))
5237, 51eqtr3d 2767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) = (𝐺𝑃))
5352oveq2d 7406 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝐺𝑃)))
54 eqid 2730 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
5510, 14, 54, 11, 4lhpjat2 40022 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
561, 13, 55syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
5753, 56oveq12d 7408 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)))
58 hlol 39361 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
5920, 58syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
6010, 11, 4, 5ltrnat 40141 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
611, 2, 21, 60syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
6226, 14, 11hlatjcl 39367 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6320, 23, 61, 62syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6426, 15, 54olm11 39227 . . . 4 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6559, 63, 64syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6657, 65eqtrd 2765 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = ((𝐹𝑃) (𝐺𝑃)))
6719, 35, 663eqtrd 2769 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110   I cid 5535  ccnv 5640  cres 5643  ccom 5645  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  1.cp1 18390  OLcol 39174  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  cdlemkfid1N  40922
  Copyright terms: Public domain W3C validator