Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Structured version   Visualization version   GIF version

Theorem trlcoabs2N 38983
Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l = (le‘𝐾)
trlcoabs.j = (join‘𝐾)
trlcoabs.a 𝐴 = (Atoms‘𝐾)
trlcoabs.h 𝐻 = (LHyp‘𝐾)
trlcoabs.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoabs.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoabs2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
3 simp2l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 trlcoabs.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 trlcoabs.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncnv 38407 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
71, 3, 6syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
84, 5ltrnco 38980 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
91, 2, 7, 8syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐹) ∈ 𝑇)
10 trlcoabs.l . . . . . 6 = (le‘𝐾)
11 trlcoabs.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrnel 38400 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
13123adant2r 1178 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
14 trlcoabs.j . . . . 5 = (join‘𝐾)
15 eqid 2736 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
16 trlcoabs.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1710, 14, 15, 11, 4, 5, 16trlval2 38424 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
181, 9, 13, 17syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝐺𝐹)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊))
1918oveq2d 7345 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)))
20 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
21 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2210, 11, 4, 5ltrnat 38401 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
231, 3, 21, 22syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
2410, 11, 4, 5ltrnat 38401 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇 ∧ (𝐹𝑃) ∈ 𝐴) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
251, 9, 23, 24syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴)
26 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2726, 14, 11hlatjcl 37627 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
2820, 23, 25, 27syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾))
29 simp1r 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
3026, 4lhpbase 38259 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3129, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
3210, 14, 11hlatlej1 37635 . . . 4 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ ((𝐺𝐹)‘(𝐹𝑃)) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3320, 23, 25, 32syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))))
3426, 10, 14, 15, 11atmod3i1 38125 . . 3 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹𝑃) ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3520, 23, 28, 31, 33, 34syl131anc 1382 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)𝑊)) = (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)))
3610, 11, 4, 5ltrncoval 38406 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
371, 9, 3, 21, 36syl121anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = ((𝐺𝐹)‘(𝐹𝑃)))
38 coass 6197 . . . . . . . 8 ((𝐺𝐹) ∘ 𝐹) = (𝐺 ∘ (𝐹𝐹))
3926, 4, 5ltrn1o 38385 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
401, 3, 39syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
41 f1ococnv1 6790 . . . . . . . . . . 11 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4240, 41syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
4342coeq2d 5798 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = (𝐺 ∘ ( I ↾ (Base‘𝐾))))
4426, 4, 5ltrn1o 38385 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 2, 44syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6761 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi1 6693 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4845, 46, 473syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺)
4943, 48eqtrd 2776 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 ∘ (𝐹𝐹)) = 𝐺)
5038, 49eqtrid 2788 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹) ∘ 𝐹) = 𝐺)
5150fveq1d 6821 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝐹) ∘ 𝐹)‘𝑃) = (𝐺𝑃))
5237, 51eqtr3d 2778 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝐹)‘(𝐹𝑃)) = (𝐺𝑃))
5352oveq2d 7345 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝐺𝑃)))
54 eqid 2736 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
5510, 14, 54, 11, 4lhpjat2 38282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
561, 13, 55syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊) = (1.‘𝐾))
5753, 56oveq12d 7347 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)))
58 hlol 37621 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
5920, 58syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
6010, 11, 4, 5ltrnat 38401 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
611, 2, 21, 60syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝑃) ∈ 𝐴)
6226, 14, 11hlatjcl 37627 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6320, 23, 61, 62syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾))
6426, 15, 54olm11 37487 . . . 4 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝐺𝑃)) ∈ (Base‘𝐾)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6559, 63, 64syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝐺𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹𝑃) (𝐺𝑃)))
6657, 65eqtrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝐺𝐹)‘(𝐹𝑃)))(meet‘𝐾)((𝐹𝑃) 𝑊)) = ((𝐹𝑃) (𝐺𝑃)))
6719, 35, 663eqtrd 2780 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5089   I cid 5511  ccnv 5613  cres 5616  ccom 5618  wf 6469  1-1-ontowf1o 6472  cfv 6473  (class class class)co 7329  Basecbs 17001  lecple 17058  joincjn 18118  meetcmee 18119  1.cp1 18231  OLcol 37434  Atomscatm 37523  HLchlt 37610  LHypclh 38245  LTrncltrn 38362  trLctrl 38419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-riotaBAD 37213
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-undef 8151  df-map 8680  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-p1 18233  df-lat 18239  df-clat 18306  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-llines 37759  df-lplanes 37760  df-lvols 37761  df-lines 37762  df-psubsp 37764  df-pmap 37765  df-padd 38057  df-lhyp 38249  df-laut 38250  df-ldil 38365  df-ltrn 38366  df-trl 38420
This theorem is referenced by:  cdlemkfid1N  39182
  Copyright terms: Public domain W3C validator