Proof of Theorem trlcoabs2N
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp2r 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
3 | | simp2l 1198 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
4 | | trlcoabs.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | trlcoabs.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | 4, 5 | ltrncnv 38160 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
7 | 1, 3, 6 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ◡𝐹 ∈ 𝑇) |
8 | 4, 5 | ltrnco 38733 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
9 | 1, 2, 7, 8 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
10 | | trlcoabs.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
11 | | trlcoabs.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
12 | 10, 11, 4, 5 | ltrnel 38153 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
13 | 12 | 3adant2r 1178 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
14 | | trlcoabs.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
15 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
16 | | trlcoabs.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
17 | 10, 14, 15, 11, 4, 5, 16 | trlval2 38177 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇 ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐹)) = (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)𝑊)) |
18 | 1, 9, 13, 17 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐹)) = (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)𝑊)) |
19 | 18 | oveq2d 7291 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)𝑊))) |
20 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
21 | | simp3l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
22 | 10, 11, 4, 5 | ltrnat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
23 | 1, 3, 21, 22 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) |
24 | 10, 11, 4, 5 | ltrnat 38154 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇 ∧ (𝐹‘𝑃) ∈ 𝐴) → ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)) ∈ 𝐴) |
25 | 1, 9, 23, 24 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)) ∈ 𝐴) |
26 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
27 | 26, 14, 11 | hlatjcl 37381 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)) ∈ 𝐴) → ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) ∈ (Base‘𝐾)) |
28 | 20, 23, 25, 27 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) ∈ (Base‘𝐾)) |
29 | | simp1r 1197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
30 | 26, 4 | lhpbase 38012 |
. . . 4
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
31 | 29, 30 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
32 | 10, 14, 11 | hlatlej1 37389 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)) ∈ 𝐴) → (𝐹‘𝑃) ≤ ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))) |
33 | 20, 23, 25, 32 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≤ ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))) |
34 | 26, 10, 14, 15, 11 | atmod3i1 37878 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹‘𝑃) ≤ ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))) → ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)𝑊)) = (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)((𝐹‘𝑃) ∨ 𝑊))) |
35 | 20, 23, 28, 31, 33, 34 | syl131anc 1382 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)𝑊)) = (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)((𝐹‘𝑃) ∨ 𝑊))) |
36 | 10, 11, 4, 5 | ltrncoval 38159 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺 ∘ ◡𝐹) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (((𝐺 ∘ ◡𝐹) ∘ 𝐹)‘𝑃) = ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) |
37 | 1, 9, 3, 21, 36 | syl121anc 1374 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐺 ∘ ◡𝐹) ∘ 𝐹)‘𝑃) = ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) |
38 | | coass 6169 |
. . . . . . . 8
⊢ ((𝐺 ∘ ◡𝐹) ∘ 𝐹) = (𝐺 ∘ (◡𝐹 ∘ 𝐹)) |
39 | 26, 4, 5 | ltrn1o 38138 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
40 | 1, 3, 39 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
41 | | f1ococnv1 6745 |
. . . . . . . . . . 11
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) |
43 | 42 | coeq2d 5771 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺 ∘ (◡𝐹 ∘ 𝐹)) = (𝐺 ∘ ( I ↾ (Base‘𝐾)))) |
44 | 26, 4, 5 | ltrn1o 38138 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
45 | 1, 2, 44 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
46 | | f1of 6716 |
. . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
47 | | fcoi1 6648 |
. . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺 ∘ ( I ↾ (Base‘𝐾))) = 𝐺) |
49 | 43, 48 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺 ∘ (◡𝐹 ∘ 𝐹)) = 𝐺) |
50 | 38, 49 | eqtrid 2790 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺 ∘ ◡𝐹) ∘ 𝐹) = 𝐺) |
51 | 50 | fveq1d 6776 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐺 ∘ ◡𝐹) ∘ 𝐹)‘𝑃) = (𝐺‘𝑃)) |
52 | 37, 51 | eqtr3d 2780 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)) = (𝐺‘𝑃)) |
53 | 52 | oveq2d 7291 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃))) = ((𝐹‘𝑃) ∨ (𝐺‘𝑃))) |
54 | | eqid 2738 |
. . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) |
55 | 10, 14, 54, 11, 4 | lhpjat2 38035 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ((𝐹‘𝑃) ∨ 𝑊) = (1.‘𝐾)) |
56 | 1, 13, 55 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ 𝑊) = (1.‘𝐾)) |
57 | 53, 56 | oveq12d 7293 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)((𝐹‘𝑃) ∨ 𝑊)) = (((𝐹‘𝑃) ∨ (𝐺‘𝑃))(meet‘𝐾)(1.‘𝐾))) |
58 | | hlol 37375 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
59 | 20, 58 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ OL) |
60 | 10, 11, 4, 5 | ltrnat 38154 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
61 | 1, 2, 21, 60 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝑃) ∈ 𝐴) |
62 | 26, 14, 11 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) → ((𝐹‘𝑃) ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
63 | 20, 23, 61, 62 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
64 | 26, 15, 54 | olm11 37241 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ ((𝐹‘𝑃) ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) → (((𝐹‘𝑃) ∨ (𝐺‘𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹‘𝑃) ∨ (𝐺‘𝑃))) |
65 | 59, 63, 64 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ (𝐺‘𝑃))(meet‘𝐾)(1.‘𝐾)) = ((𝐹‘𝑃) ∨ (𝐺‘𝑃))) |
66 | 57, 65 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝐹‘𝑃) ∨ ((𝐺 ∘ ◡𝐹)‘(𝐹‘𝑃)))(meet‘𝐾)((𝐹‘𝑃) ∨ 𝑊)) = ((𝐹‘𝑃) ∨ (𝐺‘𝑃))) |
67 | 19, 35, 66 | 3eqtrd 2782 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝐹‘𝑃) ∨ (𝐺‘𝑃))) |