MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eclclwwlkn1 Structured version   Visualization version   GIF version

Theorem eclclwwlkn1 30054
Description: An equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eclclwwlkn1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥,𝑦   𝑛,𝑊   𝑥, ,𝑦   𝑥,𝑊   𝑥,𝐺   𝑥,𝑋   𝑥,𝐵,𝑦   𝑦,𝑁   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑦,𝑢,𝑡,𝑛)   𝑋(𝑢,𝑡,𝑛)

Proof of Theorem eclclwwlkn1
StepHypRef Expression
1 elqsecl 8717 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
2 erclwwlkn.w . . . . . . . . 9 𝑊 = (𝑁 ClWWalksN 𝐺)
3 erclwwlkn.r . . . . . . . . 9 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
42, 3erclwwlknsym 30049 . . . . . . . 8 (𝑥 𝑦𝑦 𝑥)
52, 3erclwwlknsym 30049 . . . . . . . 8 (𝑦 𝑥𝑥 𝑦)
64, 5impbii 209 . . . . . . 7 (𝑥 𝑦𝑦 𝑥)
76a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑥 𝑦𝑦 𝑥))
87abbidv 2795 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑦 𝑥})
92, 3erclwwlkneq 30046 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
109el2v 3451 . . . . . . 7 (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
1110a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1211abbidv 2795 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑦 𝑥} = {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
13 3anan12 1095 . . . . . . . 8 ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
14 ibar 528 . . . . . . . . . 10 (𝑥𝑊 → ((𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))))
1514bicomd 223 . . . . . . . . 9 (𝑥𝑊 → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1615adantl 481 . . . . . . . 8 ((𝐵𝑋𝑥𝑊) → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1713, 16bitrid 283 . . . . . . 7 ((𝐵𝑋𝑥𝑊) → ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1817abbidv 2795 . . . . . 6 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
19 df-rab 3403 . . . . . 6 {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}
2018, 19eqtr4di 2782 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
218, 12, 203eqtrd 2768 . . . 4 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
2221eqeq2d 2740 . . 3 ((𝐵𝑋𝑥𝑊) → (𝐵 = {𝑦𝑥 𝑦} ↔ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
2322rexbidva 3155 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦} ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
241, 23bitrd 279 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3402  Vcvv 3444   class class class wbr 5102  {copab 5164  (class class class)co 7369   / cqs 8647  0cc0 11044  ...cfz 13444   cyclShift ccsh 14729   ClWWalksN cclwwlkn 30003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-csh 14730  df-clwwlk 29961  df-clwwlkn 30004
This theorem is referenced by:  eleclclwwlkn  30055  hashecclwwlkn1  30056  umgrhashecclwwlk  30057
  Copyright terms: Public domain W3C validator