| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eclclwwlkn1 | Structured version Visualization version GIF version | ||
| Description: An equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| eclclwwlkn1 | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsecl 8717 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) | |
| 2 | erclwwlkn.w | . . . . . . . . 9 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 3 | erclwwlkn.r | . . . . . . . . 9 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 4 | 2, 3 | erclwwlknsym 30049 | . . . . . . . 8 ⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |
| 5 | 2, 3 | erclwwlknsym 30049 | . . . . . . . 8 ⊢ (𝑦 ∼ 𝑥 → 𝑥 ∼ 𝑦) |
| 6 | 4, 5 | impbii 209 | . . . . . . 7 ⊢ (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥)) |
| 8 | 7 | abbidv 2795 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∣ 𝑦 ∼ 𝑥}) |
| 9 | 2, 3 | erclwwlkneq 30046 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 10 | 9 | el2v 3451 | . . . . . . 7 ⊢ (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 12 | 11 | abbidv 2795 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑦 ∼ 𝑥} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
| 13 | 3anan12 1095 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) | |
| 14 | ibar 528 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))) | |
| 15 | 14 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑊 → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 17 | 13, 16 | bitrid 283 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 18 | 17 | abbidv 2795 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
| 19 | df-rab 3403 | . . . . . 6 ⊢ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} | |
| 20 | 18, 19 | eqtr4di 2782 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
| 21 | 8, 12, 20 | 3eqtrd 2768 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
| 22 | 21 | eqeq2d 2740 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| 23 | 22 | rexbidva 3155 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| 24 | 1, 23 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3402 Vcvv 3444 class class class wbr 5102 {copab 5164 (class class class)co 7369 / cqs 8647 0cc0 11044 ...cfz 13444 cyclShift ccsh 14729 ClWWalksN cclwwlkn 30003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-hash 14272 df-word 14455 df-concat 14512 df-substr 14582 df-pfx 14612 df-csh 14730 df-clwwlk 29961 df-clwwlkn 30004 |
| This theorem is referenced by: eleclclwwlkn 30055 hashecclwwlkn1 30056 umgrhashecclwwlk 30057 |
| Copyright terms: Public domain | W3C validator |