MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eclclwwlkn1 Structured version   Visualization version   GIF version

Theorem eclclwwlkn1 27848
Description: An equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eclclwwlkn1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥,𝑦   𝑛,𝑊   𝑥, ,𝑦   𝑥,𝑊   𝑥,𝐺   𝑥,𝑋   𝑥,𝐵,𝑦   𝑦,𝑁   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑦,𝑢,𝑡,𝑛)   𝑋(𝑢,𝑡,𝑛)

Proof of Theorem eclclwwlkn1
StepHypRef Expression
1 elqsecl 8345 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
2 erclwwlkn.w . . . . . . . . 9 𝑊 = (𝑁 ClWWalksN 𝐺)
3 erclwwlkn.r . . . . . . . . 9 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
42, 3erclwwlknsym 27843 . . . . . . . 8 (𝑥 𝑦𝑦 𝑥)
52, 3erclwwlknsym 27843 . . . . . . . 8 (𝑦 𝑥𝑥 𝑦)
64, 5impbii 211 . . . . . . 7 (𝑥 𝑦𝑦 𝑥)
76a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑥 𝑦𝑦 𝑥))
87abbidv 2885 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑦 𝑥})
92, 3erclwwlkneq 27840 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
109el2v 3501 . . . . . . 7 (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
1110a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1211abbidv 2885 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑦 𝑥} = {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
13 3anan12 1092 . . . . . . . 8 ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
14 ibar 531 . . . . . . . . . 10 (𝑥𝑊 → ((𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))))
1514bicomd 225 . . . . . . . . 9 (𝑥𝑊 → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1615adantl 484 . . . . . . . 8 ((𝐵𝑋𝑥𝑊) → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1713, 16syl5bb 285 . . . . . . 7 ((𝐵𝑋𝑥𝑊) → ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1817abbidv 2885 . . . . . 6 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
19 df-rab 3147 . . . . . 6 {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}
2018, 19syl6eqr 2874 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
218, 12, 203eqtrd 2860 . . . 4 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
2221eqeq2d 2832 . . 3 ((𝐵𝑋𝑥𝑊) → (𝐵 = {𝑦𝑥 𝑦} ↔ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
2322rexbidva 3296 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦} ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
241, 23bitrd 281 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  {crab 3142  Vcvv 3494   class class class wbr 5058  {copab 5120  (class class class)co 7150   / cqs 8282  0cc0 10531  ...cfz 12886   cyclShift ccsh 14144   ClWWalksN cclwwlkn 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-hash 13685  df-word 13856  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145  df-clwwlk 27754  df-clwwlkn 27797
This theorem is referenced by:  eleclclwwlkn  27849  hashecclwwlkn1  27850  umgrhashecclwwlk  27851
  Copyright terms: Public domain W3C validator