| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eclclwwlkn1 | Structured version Visualization version GIF version | ||
| Description: An equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
| erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| eclclwwlkn1 | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsecl 8691 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) | |
| 2 | erclwwlkn.w | . . . . . . . . 9 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
| 3 | erclwwlkn.r | . . . . . . . . 9 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
| 4 | 2, 3 | erclwwlknsym 30050 | . . . . . . . 8 ⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |
| 5 | 2, 3 | erclwwlknsym 30050 | . . . . . . . 8 ⊢ (𝑦 ∼ 𝑥 → 𝑥 ∼ 𝑦) |
| 6 | 4, 5 | impbii 209 | . . . . . . 7 ⊢ (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥)) |
| 8 | 7 | abbidv 2797 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∣ 𝑦 ∼ 𝑥}) |
| 9 | 2, 3 | erclwwlkneq 30047 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 10 | 9 | el2v 3443 | . . . . . . 7 ⊢ (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 12 | 11 | abbidv 2797 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑦 ∼ 𝑥} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
| 13 | 3anan12 1095 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) | |
| 14 | ibar 528 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))) | |
| 15 | 14 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑊 → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 17 | 13, 16 | bitrid 283 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
| 18 | 17 | abbidv 2797 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
| 19 | df-rab 3396 | . . . . . 6 ⊢ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} | |
| 20 | 18, 19 | eqtr4di 2784 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
| 21 | 8, 12, 20 | 3eqtrd 2770 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
| 22 | 21 | eqeq2d 2742 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| 23 | 22 | rexbidva 3154 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| 24 | 1, 23 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 Vcvv 3436 class class class wbr 5089 {copab 5151 (class class class)co 7346 / cqs 8621 0cc0 11006 ...cfz 13407 cyclShift ccsh 14695 ClWWalksN cclwwlkn 30004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-hash 14238 df-word 14421 df-concat 14478 df-substr 14549 df-pfx 14579 df-csh 14696 df-clwwlk 29962 df-clwwlkn 30005 |
| This theorem is referenced by: eleclclwwlkn 30056 hashecclwwlkn1 30057 umgrhashecclwwlk 30058 |
| Copyright terms: Public domain | W3C validator |