MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eclclwwlkn1 Structured version   Visualization version   GIF version

Theorem eclclwwlkn1 29328
Description: An equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eclclwwlkn1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥,𝑦   𝑛,𝑊   𝑥, ,𝑦   𝑥,𝑊   𝑥,𝐺   𝑥,𝑋   𝑥,𝐵,𝑦   𝑦,𝑁   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑦,𝑢,𝑡,𝑛)   𝑋(𝑢,𝑡,𝑛)

Proof of Theorem eclclwwlkn1
StepHypRef Expression
1 elqsecl 8765 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
2 erclwwlkn.w . . . . . . . . 9 𝑊 = (𝑁 ClWWalksN 𝐺)
3 erclwwlkn.r . . . . . . . . 9 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
42, 3erclwwlknsym 29323 . . . . . . . 8 (𝑥 𝑦𝑦 𝑥)
52, 3erclwwlknsym 29323 . . . . . . . 8 (𝑦 𝑥𝑥 𝑦)
64, 5impbii 208 . . . . . . 7 (𝑥 𝑦𝑦 𝑥)
76a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑥 𝑦𝑦 𝑥))
87abbidv 2802 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑦 𝑥})
92, 3erclwwlkneq 29320 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
109el2v 3483 . . . . . . 7 (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
1110a1i 11 . . . . . 6 ((𝐵𝑋𝑥𝑊) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1211abbidv 2802 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦𝑦 𝑥} = {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
13 3anan12 1097 . . . . . . . 8 ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
14 ibar 530 . . . . . . . . . 10 (𝑥𝑊 → ((𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))))
1514bicomd 222 . . . . . . . . 9 (𝑥𝑊 → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1615adantl 483 . . . . . . . 8 ((𝐵𝑋𝑥𝑊) → ((𝑥𝑊 ∧ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1713, 16bitrid 283 . . . . . . 7 ((𝐵𝑋𝑥𝑊) → ((𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
1817abbidv 2802 . . . . . 6 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))})
19 df-rab 3434 . . . . . 6 {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}
2018, 19eqtr4di 2791 . . . . 5 ((𝐵𝑋𝑥𝑊) → {𝑦 ∣ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
218, 12, 203eqtrd 2777 . . . 4 ((𝐵𝑋𝑥𝑊) → {𝑦𝑥 𝑦} = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
2221eqeq2d 2744 . . 3 ((𝐵𝑋𝑥𝑊) → (𝐵 = {𝑦𝑥 𝑦} ↔ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
2322rexbidva 3177 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦} ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
241, 23bitrd 279 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  {crab 3433  Vcvv 3475   class class class wbr 5149  {copab 5211  (class class class)co 7409   / cqs 8702  0cc0 11110  ...cfz 13484   cyclShift ccsh 14738   ClWWalksN cclwwlkn 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-csh 14739  df-clwwlk 29235  df-clwwlkn 29278
This theorem is referenced by:  eleclclwwlkn  29329  hashecclwwlkn1  29330  umgrhashecclwwlk  29331
  Copyright terms: Public domain W3C validator