![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eclclwwlkn1 | Structured version Visualization version GIF version |
Description: An equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
eclclwwlkn1 | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsecl 8810 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) | |
2 | erclwwlkn.w | . . . . . . . . 9 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
3 | erclwwlkn.r | . . . . . . . . 9 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
4 | 2, 3 | erclwwlknsym 30099 | . . . . . . . 8 ⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |
5 | 2, 3 | erclwwlknsym 30099 | . . . . . . . 8 ⊢ (𝑦 ∼ 𝑥 → 𝑥 ∼ 𝑦) |
6 | 4, 5 | impbii 209 | . . . . . . 7 ⊢ (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥)) |
8 | 7 | abbidv 2806 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∣ 𝑦 ∼ 𝑥}) |
9 | 2, 3 | erclwwlkneq 30096 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
10 | 9 | el2v 3485 | . . . . . . 7 ⊢ (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
12 | 11 | abbidv 2806 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑦 ∼ 𝑥} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
13 | 3anan12 1095 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) | |
14 | ibar 528 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))) | |
15 | 14 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑊 → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
16 | 15 | adantl 481 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
17 | 13, 16 | bitrid 283 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
18 | 17 | abbidv 2806 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
19 | df-rab 3434 | . . . . . 6 ⊢ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} | |
20 | 18, 19 | eqtr4di 2793 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
21 | 8, 12, 20 | 3eqtrd 2779 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
22 | 21 | eqeq2d 2746 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
23 | 22 | rexbidva 3175 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
24 | 1, 23 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {crab 3433 Vcvv 3478 class class class wbr 5148 {copab 5210 (class class class)co 7431 / cqs 8743 0cc0 11153 ...cfz 13544 cyclShift ccsh 14823 ClWWalksN cclwwlkn 30053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-hash 14367 df-word 14550 df-concat 14606 df-substr 14676 df-pfx 14706 df-csh 14824 df-clwwlk 30011 df-clwwlkn 30054 |
This theorem is referenced by: eleclclwwlkn 30105 hashecclwwlkn1 30106 umgrhashecclwwlk 30107 |
Copyright terms: Public domain | W3C validator |