![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eclclwwlkn1 | Structured version Visualization version GIF version |
Description: An equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
eclclwwlkn1 | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsecl 8796 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) | |
2 | erclwwlkn.w | . . . . . . . . 9 ⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) | |
3 | erclwwlkn.r | . . . . . . . . 9 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
4 | 2, 3 | erclwwlknsym 29900 | . . . . . . . 8 ⊢ (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) |
5 | 2, 3 | erclwwlknsym 29900 | . . . . . . . 8 ⊢ (𝑦 ∼ 𝑥 → 𝑥 ∼ 𝑦) |
6 | 4, 5 | impbii 208 | . . . . . . 7 ⊢ (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∼ 𝑦 ↔ 𝑦 ∼ 𝑥)) |
8 | 7 | abbidv 2797 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∣ 𝑦 ∼ 𝑥}) |
9 | 2, 3 | erclwwlkneq 29897 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
10 | 9 | el2v 3481 | . . . . . . 7 ⊢ (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
12 | 11 | abbidv 2797 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑦 ∼ 𝑥} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
13 | 3anan12 1093 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) | |
14 | ibar 527 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))) | |
15 | 14 | bicomd 222 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑊 → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
16 | 15 | adantl 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑥 ∈ 𝑊 ∧ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
17 | 13, 16 | bitrid 282 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → ((𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)) ↔ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))) |
18 | 17 | abbidv 2797 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))}) |
19 | df-rab 3431 | . . . . . 6 ⊢ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} | |
20 | 18, 19 | eqtr4di 2786 | . . . . 5 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
21 | 8, 12, 20 | 3eqtrd 2772 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → {𝑦 ∣ 𝑥 ∼ 𝑦} = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) |
22 | 21 | eqeq2d 2739 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝑥 ∈ 𝑊) → (𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
23 | 22 | rexbidva 3174 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦} ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
24 | 1, 23 | bitrd 278 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2705 ∃wrex 3067 {crab 3430 Vcvv 3473 class class class wbr 5152 {copab 5214 (class class class)co 7426 / cqs 8730 0cc0 11146 ...cfz 13524 cyclShift ccsh 14778 ClWWalksN cclwwlkn 29854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-ec 8733 df-qs 8737 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-hash 14330 df-word 14505 df-concat 14561 df-substr 14631 df-pfx 14661 df-csh 14779 df-clwwlk 29812 df-clwwlkn 29855 |
This theorem is referenced by: eleclclwwlkn 29906 hashecclwwlkn1 29907 umgrhashecclwwlk 29908 |
Copyright terms: Public domain | W3C validator |