Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brres2 Structured version   Visualization version   GIF version

Theorem brres2 38250
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.)
Assertion
Ref Expression
brres2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)

Proof of Theorem brres2
StepHypRef Expression
1 brres 6007 . . 3 (𝐶 ∈ ran (𝑅𝐴) → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
21pm5.32i 574 . 2 ((𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
3 relres 6026 . . . 4 Rel (𝑅𝐴)
43relelrni 5963 . . 3 (𝐵(𝑅𝐴)𝐶𝐶 ∈ ran (𝑅𝐴))
54pm4.71ri 560 . 2 (𝐵(𝑅𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶))
6 brinxp2 5766 . . 3 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
7 df-3an 1088 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
8 3anan12 1095 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
96, 7, 83bitr2i 299 . 2 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
102, 5, 93bitr4i 303 1 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2106  cin 3962   class class class wbr 5148   × cxp 5687  ran crn 5690  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701
This theorem is referenced by:  brinxprnres  38273
  Copyright terms: Public domain W3C validator