![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brres2 | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.) |
Ref | Expression |
---|---|
brres2 | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 6016 | . . 3 ⊢ (𝐶 ∈ ran (𝑅 ↾ 𝐴) → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
3 | relres 6035 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
4 | 3 | relelrni 5974 | . . 3 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 → 𝐶 ∈ ran (𝑅 ↾ 𝐴)) |
5 | 4 | pm4.71ri 560 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶)) |
6 | brinxp2 5777 | . . 3 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
7 | df-3an 1089 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
8 | 3anan12 1096 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
9 | 6, 7, 8 | 3bitr2i 299 | . 2 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
10 | 2, 5, 9 | 3bitr4i 303 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∩ cin 3975 class class class wbr 5166 × cxp 5698 ran crn 5701 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: brinxprnres 38247 |
Copyright terms: Public domain | W3C validator |