Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brres2 | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.) |
Ref | Expression |
---|---|
brres2 | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5887 | . . 3 ⊢ (𝐶 ∈ ran (𝑅 ↾ 𝐴) → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
3 | relres 5909 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
4 | 3 | relelrni 5847 | . . 3 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 → 𝐶 ∈ ran (𝑅 ↾ 𝐴)) |
5 | 4 | pm4.71ri 560 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶)) |
6 | brinxp2 5655 | . . 3 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
7 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
8 | 3anan12 1094 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
9 | 6, 7, 8 | 3bitr2i 298 | . 2 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
10 | 2, 5, 9 | 3bitr4i 302 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∩ cin 3882 class class class wbr 5070 × cxp 5578 ran crn 5581 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: brinxprnres 36353 |
Copyright terms: Public domain | W3C validator |