Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brres2 Structured version   Visualization version   GIF version

Theorem brres2 37184
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.)
Assertion
Ref Expression
brres2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)

Proof of Theorem brres2
StepHypRef Expression
1 brres 5989 . . 3 (𝐶 ∈ ran (𝑅𝐴) → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
21pm5.32i 576 . 2 ((𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
3 relres 6011 . . . 4 Rel (𝑅𝐴)
43relelrni 5949 . . 3 (𝐵(𝑅𝐴)𝐶𝐶 ∈ ran (𝑅𝐴))
54pm4.71ri 562 . 2 (𝐵(𝑅𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶))
6 brinxp2 5754 . . 3 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
7 df-3an 1090 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
8 3anan12 1097 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
96, 7, 83bitr2i 299 . 2 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
102, 5, 93bitr4i 303 1 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088  wcel 2107  cin 3948   class class class wbr 5149   × cxp 5675  ran crn 5678  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  brinxprnres  37208
  Copyright terms: Public domain W3C validator