Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brres2 Structured version   Visualization version   GIF version

Theorem brres2 38269
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.)
Assertion
Ref Expression
brres2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)

Proof of Theorem brres2
StepHypRef Expression
1 brres 6004 . . 3 (𝐶 ∈ ran (𝑅𝐴) → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
21pm5.32i 574 . 2 ((𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
3 relres 6023 . . . 4 Rel (𝑅𝐴)
43relelrni 5960 . . 3 (𝐵(𝑅𝐴)𝐶𝐶 ∈ ran (𝑅𝐴))
54pm4.71ri 560 . 2 (𝐵(𝑅𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵(𝑅𝐴)𝐶))
6 brinxp2 5763 . . 3 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
7 df-3an 1089 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴)) ∧ 𝐵𝑅𝐶))
8 3anan12 1096 . . 3 ((𝐵𝐴𝐶 ∈ ran (𝑅𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
96, 7, 83bitr2i 299 . 2 (𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅𝐴) ∧ (𝐵𝐴𝐵𝑅𝐶)))
102, 5, 93bitr4i 303 1 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087  wcel 2108  cin 3950   class class class wbr 5143   × cxp 5683  ran crn 5686  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697
This theorem is referenced by:  brinxprnres  38292
  Copyright terms: Public domain W3C validator