Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brres2 | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019.) (Revised by Peter Mazsa, 16-Dec-2021.) |
Ref | Expression |
---|---|
brres2 | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres 5898 | . . 3 ⊢ (𝐶 ∈ ran (𝑅 ↾ 𝐴) → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
3 | relres 5920 | . . . 4 ⊢ Rel (𝑅 ↾ 𝐴) | |
4 | 3 | relelrni 5858 | . . 3 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 → 𝐶 ∈ ran (𝑅 ↾ 𝐴)) |
5 | 4 | pm4.71ri 561 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵(𝑅 ↾ 𝐴)𝐶)) |
6 | brinxp2 5664 | . . 3 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
7 | df-3an 1088 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴)) ∧ 𝐵𝑅𝐶)) | |
8 | 3anan12 1095 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ 𝐵𝑅𝐶) ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
9 | 6, 7, 8 | 3bitr2i 299 | . 2 ⊢ (𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶 ↔ (𝐶 ∈ ran (𝑅 ↾ 𝐴) ∧ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
10 | 2, 5, 9 | 3bitr4i 303 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵(𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴)))𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∩ cin 3886 class class class wbr 5074 × cxp 5587 ran crn 5590 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: brinxprnres 36426 |
Copyright terms: Public domain | W3C validator |