Step | Hyp | Ref
| Expression |
1 | | wrdnfi 14502 |
. . . 4
β’
((VtxβπΊ)
β Fin β {π€ β
Word (VtxβπΊ) β£
(β―βπ€) = (π + 1)} β
Fin) |
2 | | simpr 485 |
. . . . . . 7
β’ (((π€ β β
β§
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)) β (β―βπ€) = (π + 1)) |
3 | 2 | a1i 11 |
. . . . . 6
β’ (π€ β Word (VtxβπΊ) β (((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)) β (β―βπ€) = (π + 1))) |
4 | 3 | ss2rabi 4074 |
. . . . 5
β’ {π€ β Word (VtxβπΊ) β£ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} β {π€ β Word (VtxβπΊ) β£ (β―βπ€) = (π + 1)} |
5 | 4 | a1i 11 |
. . . 4
β’
((VtxβπΊ)
β Fin β {π€ β
Word (VtxβπΊ) β£
((π€ β β
β§
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} β {π€ β Word (VtxβπΊ) β£ (β―βπ€) = (π + 1)}) |
6 | 1, 5 | ssfid 9269 |
. . 3
β’
((VtxβπΊ)
β Fin β {π€ β
Word (VtxβπΊ) β£
((π€ β β
β§
βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} β Fin) |
7 | | wwlksn 29346 |
. . . . . 6
β’ (π β β0
β (π WWalksN πΊ) = {π€ β (WWalksβπΊ) β£ (β―βπ€) = (π + 1)}) |
8 | | df-rab 3433 |
. . . . . 6
β’ {π€ β (WWalksβπΊ) β£ (β―βπ€) = (π + 1)} = {π€ β£ (π€ β (WWalksβπΊ) β§ (β―βπ€) = (π + 1))} |
9 | 7, 8 | eqtrdi 2788 |
. . . . 5
β’ (π β β0
β (π WWalksN πΊ) = {π€ β£ (π€ β (WWalksβπΊ) β§ (β―βπ€) = (π + 1))}) |
10 | | 3anan12 1096 |
. . . . . . . . 9
β’ ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β (π€ β Word (VtxβπΊ) β§ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)))) |
11 | 10 | anbi1i 624 |
. . . . . . . 8
β’ (((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)) β ((π€ β Word (VtxβπΊ) β§ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) β§ (β―βπ€) = (π + 1))) |
12 | | anass 469 |
. . . . . . . 8
β’ (((π€ β Word (VtxβπΊ) β§ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) β§ (β―βπ€) = (π + 1)) β (π€ β Word (VtxβπΊ) β§ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)))) |
13 | 11, 12 | bitri 274 |
. . . . . . 7
β’ (((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)) β (π€ β Word (VtxβπΊ) β§ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)))) |
14 | 13 | abbii 2802 |
. . . . . 6
β’ {π€ β£ ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} = {π€ β£ (π€ β Word (VtxβπΊ) β§ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)))} |
15 | | eqid 2732 |
. . . . . . . . 9
β’
(VtxβπΊ) =
(VtxβπΊ) |
16 | | eqid 2732 |
. . . . . . . . 9
β’
(EdgβπΊ) =
(EdgβπΊ) |
17 | 15, 16 | iswwlks 29345 |
. . . . . . . 8
β’ (π€ β (WWalksβπΊ) β (π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ))) |
18 | 17 | anbi1i 624 |
. . . . . . 7
β’ ((π€ β (WWalksβπΊ) β§ (β―βπ€) = (π + 1)) β ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))) |
19 | 18 | abbii 2802 |
. . . . . 6
β’ {π€ β£ (π€ β (WWalksβπΊ) β§ (β―βπ€) = (π + 1))} = {π€ β£ ((π€ β β
β§ π€ β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ€) β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} |
20 | | df-rab 3433 |
. . . . . 6
β’ {π€ β Word (VtxβπΊ) β£ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} = {π€ β£ (π€ β Word (VtxβπΊ) β§ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1)))} |
21 | 14, 19, 20 | 3eqtr4i 2770 |
. . . . 5
β’ {π€ β£ (π€ β (WWalksβπΊ) β§ (β―βπ€) = (π + 1))} = {π€ β Word (VtxβπΊ) β£ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} |
22 | 9, 21 | eqtrdi 2788 |
. . . 4
β’ (π β β0
β (π WWalksN πΊ) = {π€ β Word (VtxβπΊ) β£ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))}) |
23 | 22 | eleq1d 2818 |
. . 3
β’ (π β β0
β ((π WWalksN πΊ) β Fin β {π€ β Word (VtxβπΊ) β£ ((π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (EdgβπΊ)) β§ (β―βπ€) = (π + 1))} β Fin)) |
24 | 6, 23 | imbitrrid 245 |
. 2
β’ (π β β0
β ((VtxβπΊ)
β Fin β (π
WWalksN πΊ) β
Fin)) |
25 | | df-nel 3047 |
. . . . . . 7
β’ (π β β0
β Β¬ π β
β0) |
26 | 25 | biimpri 227 |
. . . . . 6
β’ (Β¬
π β
β0 β π β
β0) |
27 | 26 | olcd 872 |
. . . . 5
β’ (Β¬
π β
β0 β (πΊ β V β¨ π β
β0)) |
28 | | wwlksnndef 29414 |
. . . . 5
β’ ((πΊ β V β¨ π β β0)
β (π WWalksN πΊ) = β
) |
29 | 27, 28 | syl 17 |
. . . 4
β’ (Β¬
π β
β0 β (π WWalksN πΊ) = β
) |
30 | | 0fin 9173 |
. . . 4
β’ β
β Fin |
31 | 29, 30 | eqeltrdi 2841 |
. . 3
β’ (Β¬
π β
β0 β (π WWalksN πΊ) β Fin) |
32 | 31 | a1d 25 |
. 2
β’ (Β¬
π β
β0 β ((VtxβπΊ) β Fin β (π WWalksN πΊ) β Fin)) |
33 | 24, 32 | pm2.61i 182 |
1
β’
((VtxβπΊ)
β Fin β (π
WWalksN πΊ) β
Fin) |