Step | Hyp | Ref
| Expression |
1 | | wrdnfi 14531 |
. . . 4
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
(♯‘𝑤) = (𝑁 + 1)} ∈
Fin) |
2 | | simpr 484 |
. . . . . . 7
⊢ (((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1)) |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))) |
4 | 3 | ss2rabi 4072 |
. . . . 5
⊢ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} |
5 | 4 | a1i 11 |
. . . 4
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
6 | 1, 5 | ssfid 9292 |
. . 3
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin) |
7 | | wwlksn 29661 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
8 | | df-rab 3430 |
. . . . . 6
⊢ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} |
9 | 7, 8 | eqtrdi 2784 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))}) |
10 | | 3anan12 1094 |
. . . . . . . . 9
⊢ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
11 | 10 | anbi1i 623 |
. . . . . . . 8
⊢ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1))) |
12 | | anass 468 |
. . . . . . . 8
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))) |
13 | 11, 12 | bitri 275 |
. . . . . . 7
⊢ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))) |
14 | 13 | abbii 2798 |
. . . . . 6
⊢ {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))} |
15 | | eqid 2728 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
16 | | eqid 2728 |
. . . . . . . . 9
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
17 | 15, 16 | iswwlks 29660 |
. . . . . . . 8
⊢ (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
18 | 17 | anbi1i 623 |
. . . . . . 7
⊢ ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))) |
19 | 18 | abbii 2798 |
. . . . . 6
⊢ {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} |
20 | | df-rab 3430 |
. . . . . 6
⊢ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))} |
21 | 14, 19, 20 | 3eqtr4i 2766 |
. . . . 5
⊢ {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} |
22 | 9, 21 | eqtrdi 2784 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}) |
23 | 22 | eleq1d 2814 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 WWalksN 𝐺) ∈ Fin ↔ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)) |
24 | 6, 23 | imbitrrid 245 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin)) |
25 | | df-nel 3044 |
. . . . . . 7
⊢ (𝑁 ∉ ℕ0
↔ ¬ 𝑁 ∈
ℕ0) |
26 | 25 | biimpri 227 |
. . . . . 6
⊢ (¬
𝑁 ∈
ℕ0 → 𝑁 ∉
ℕ0) |
27 | 26 | olcd 873 |
. . . . 5
⊢ (¬
𝑁 ∈
ℕ0 → (𝐺 ∉ V ∨ 𝑁 ∉
ℕ0)) |
28 | | wwlksnndef 29729 |
. . . . 5
⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)
→ (𝑁 WWalksN 𝐺) = ∅) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (¬
𝑁 ∈
ℕ0 → (𝑁 WWalksN 𝐺) = ∅) |
30 | | 0fin 9196 |
. . . 4
⊢ ∅
∈ Fin |
31 | 29, 30 | eqeltrdi 2837 |
. . 3
⊢ (¬
𝑁 ∈
ℕ0 → (𝑁 WWalksN 𝐺) ∈ Fin) |
32 | 31 | a1d 25 |
. 2
⊢ (¬
𝑁 ∈
ℕ0 → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)) |
33 | 24, 32 | pm2.61i 182 |
1
⊢
((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin) |