MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnfi Structured version   Visualization version   GIF version

Theorem wwlksnfi 29888
Description: The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.) (Proof shortened by JJ, 18-Nov-2022.)
Assertion
Ref Expression
wwlksnfi ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)

Proof of Theorem wwlksnfi
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdnfi 14566 . . . 4 ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin)
2 simpr 484 . . . . . . 7 (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))
32a1i 11 . . . . . 6 (𝑤 ∈ Word (Vtx‘𝐺) → (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1)))
43ss2rabi 4052 . . . . 5 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}
54a1i 11 . . . 4 ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
61, 5ssfid 9273 . . 3 ((Vtx‘𝐺) ∈ Fin → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)
7 wwlksn 29819 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
8 df-rab 3416 . . . . . 6 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))}
97, 8eqtrdi 2786 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))})
10 3anan12 1095 . . . . . . . . 9 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1110anbi1i 624 . . . . . . . 8 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)))
12 anass 468 . . . . . . . 8 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1311, 12bitri 275 . . . . . . 7 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1413abbii 2802 . . . . . 6 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
15 eqid 2735 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
16 eqid 2735 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
1715, 16iswwlks 29818 . . . . . . . 8 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1817anbi1i 624 . . . . . . 7 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))
1918abbii 2802 . . . . . 6 {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}
20 df-rab 3416 . . . . . 6 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
2114, 19, 203eqtr4i 2768 . . . . 5 {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}
229, 21eqtrdi 2786 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
2322eleq1d 2819 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 WWalksN 𝐺) ∈ Fin ↔ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin))
246, 23imbitrrid 246 . 2 (𝑁 ∈ ℕ0 → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
25 df-nel 3037 . . . . . . 7 (𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0)
2625biimpri 228 . . . . . 6 𝑁 ∈ ℕ0𝑁 ∉ ℕ0)
2726olcd 874 . . . . 5 𝑁 ∈ ℕ0 → (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0))
28 wwlksnndef 29887 . . . . 5 ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑁 WWalksN 𝐺) = ∅)
2927, 28syl 17 . . . 4 𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = ∅)
30 0fi 9056 . . . 4 ∅ ∈ Fin
3129, 30eqeltrdi 2842 . . 3 𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) ∈ Fin)
3231a1d 25 . 2 𝑁 ∈ ℕ0 → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
3324, 32pm2.61i 182 1 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wnel 3036  wral 3051  {crab 3415  Vcvv 3459  wss 3926  c0 4308  {cpr 4603  cfv 6531  (class class class)co 7405  Fincfn 8959  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531  Vtxcvtx 28975  Edgcedg 29026  WWalkscwwlks 29807   WWalksN cwwlksn 29808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-wwlks 29812  df-wwlksn 29813
This theorem is referenced by:  wlksnfi  29889  hashwwlksnext  29896  wspthnfi  29901  wwlksnonfi  29902  rusgrnumwwlks  29956  clwwlknclwwlkdifnum  29961
  Copyright terms: Public domain W3C validator