| Step | Hyp | Ref
| Expression |
| 1 | | wrdnfi 14586 |
. . . 4
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
(♯‘𝑤) = (𝑁 + 1)} ∈
Fin) |
| 2 | | simpr 484 |
. . . . . . 7
⊢ (((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1)) |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝑤 ∈ Word (Vtx‘𝐺) → (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))) |
| 4 | 3 | ss2rabi 4077 |
. . . . 5
⊢ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} |
| 5 | 4 | a1i 11 |
. . . 4
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 6 | 1, 5 | ssfid 9301 |
. . 3
⊢
((Vtx‘𝐺)
∈ Fin → {𝑤 ∈
Word (Vtx‘𝐺) ∣
((𝑤 ≠ ∅ ∧
∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin) |
| 7 | | wwlksn 29857 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 8 | | df-rab 3437 |
. . . . . 6
⊢ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} |
| 9 | 7, 8 | eqtrdi 2793 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))}) |
| 10 | | 3anan12 1096 |
. . . . . . . . 9
⊢ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
| 11 | 10 | anbi1i 624 |
. . . . . . . 8
⊢ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1))) |
| 12 | | anass 468 |
. . . . . . . 8
⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))) |
| 13 | 11, 12 | bitri 275 |
. . . . . . 7
⊢ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))) |
| 14 | 13 | abbii 2809 |
. . . . . 6
⊢ {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))} |
| 15 | | eqid 2737 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 16 | | eqid 2737 |
. . . . . . . . 9
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 17 | 15, 16 | iswwlks 29856 |
. . . . . . . 8
⊢ (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 18 | 17 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))) |
| 19 | 18 | abbii 2809 |
. . . . . 6
⊢ {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} |
| 20 | | df-rab 3437 |
. . . . . 6
⊢ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))} |
| 21 | 14, 19, 20 | 3eqtr4i 2775 |
. . . . 5
⊢ {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} |
| 22 | 9, 21 | eqtrdi 2793 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}) |
| 23 | 22 | eleq1d 2826 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 WWalksN 𝐺) ∈ Fin ↔ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)) |
| 24 | 6, 23 | imbitrrid 246 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin)) |
| 25 | | df-nel 3047 |
. . . . . . 7
⊢ (𝑁 ∉ ℕ0
↔ ¬ 𝑁 ∈
ℕ0) |
| 26 | 25 | biimpri 228 |
. . . . . 6
⊢ (¬
𝑁 ∈
ℕ0 → 𝑁 ∉
ℕ0) |
| 27 | 26 | olcd 875 |
. . . . 5
⊢ (¬
𝑁 ∈
ℕ0 → (𝐺 ∉ V ∨ 𝑁 ∉
ℕ0)) |
| 28 | | wwlksnndef 29925 |
. . . . 5
⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)
→ (𝑁 WWalksN 𝐺) = ∅) |
| 29 | 27, 28 | syl 17 |
. . . 4
⊢ (¬
𝑁 ∈
ℕ0 → (𝑁 WWalksN 𝐺) = ∅) |
| 30 | | 0fi 9082 |
. . . 4
⊢ ∅
∈ Fin |
| 31 | 29, 30 | eqeltrdi 2849 |
. . 3
⊢ (¬
𝑁 ∈
ℕ0 → (𝑁 WWalksN 𝐺) ∈ Fin) |
| 32 | 31 | a1d 25 |
. 2
⊢ (¬
𝑁 ∈
ℕ0 → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)) |
| 33 | 24, 32 | pm2.61i 182 |
1
⊢
((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin) |