MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Visualization version   GIF version

Theorem ixxun 13256
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
ixxun.4 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
ixxun.5 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
ixxun.6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxun (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝑄   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 4098 . . 3 (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
2 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐵 ∈ ℝ*)
4 ixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13249 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
62, 3, 5syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
76biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
87simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
97simp2d 1143 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
107simp3d 1144 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
11 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵𝑋𝐶)
123adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 simpl3 1194 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐶 ∈ ℝ*)
1413adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐶 ∈ ℝ*)
15 ixxun.5 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
168, 12, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
1710, 11, 16mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑈𝐶)
188, 9, 173jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
19 ixxun.2 . . . . . . . . . . 11 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
2019elixx1 13249 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
213, 13, 20syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
2221biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
2322simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
24 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
2522simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
262adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
273adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
28 ixxun.6 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
2926, 27, 23, 28syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
3024, 25, 29mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
3122simp3d 1144 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑈𝐶)
3223, 30, 313jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
3318, 32jaodan 959 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
34 ixxun.4 . . . . . . . 8 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
3534elixx1 13249 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
362, 13, 35syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
3736biimpar 477 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)) → 𝑤 ∈ (𝐴𝑄𝐶))
3833, 37syldan 591 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤 ∈ (𝐴𝑄𝐶))
39 exmid 894 . . . . 5 (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)
4036biimpa 476 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
4140simp1d 1142 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤 ∈ ℝ*)
4240simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐴𝑅𝑤)
4341, 42jca 511 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
44 df-3an 1088 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵))
456, 44bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4645adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4743, 46mpbirand 707 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ 𝑤𝑆𝐵))
48 3anan12 1095 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶)))
4921, 48bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5049adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5140simp3d 1144 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤𝑈𝐶)
5241, 51jca 511 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝑤𝑈𝐶))
5352biantrud 531 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
543adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐵 ∈ ℝ*)
55 ixxun.3 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5654, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5750, 53, 563bitr2d 307 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ ¬ 𝑤𝑆𝐵))
5847, 57orbi12d 918 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)))
5939, 58mpbiri 258 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
6038, 59impbida 800 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
611, 60bitrid 283 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
6261eqrdv 2729 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cun 3895   class class class wbr 5086  (class class class)co 7341  cmpo 7343  *cxr 11140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-xr 11145
This theorem is referenced by:  icoun  13370  ioounsn  13372  snunioo  13373  snunico  13374  snunioc  13375  ioojoin  13378  leordtval2  23122  lecldbas  23129  icopnfcld  24677  iocmnfcld  24678  ioombl  25488  ismbf3d  25577  joiniooico  32749  asindmre  37743  snunioo1  45552
  Copyright terms: Public domain W3C validator