MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Visualization version   GIF version

Theorem ixxun 13268
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
ixxun.4 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
ixxun.5 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
ixxun.6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxun (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝑄   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 4102 . . 3 (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
2 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐵 ∈ ℝ*)
4 ixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13261 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
62, 3, 5syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
76biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
87simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
97simp2d 1143 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
107simp3d 1144 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
11 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵𝑋𝐶)
123adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 simpl3 1194 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐶 ∈ ℝ*)
1413adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐶 ∈ ℝ*)
15 ixxun.5 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
168, 12, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
1710, 11, 16mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑈𝐶)
188, 9, 173jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
19 ixxun.2 . . . . . . . . . . 11 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
2019elixx1 13261 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
213, 13, 20syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
2221biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
2322simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
24 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
2522simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
262adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
273adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
28 ixxun.6 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
2926, 27, 23, 28syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
3024, 25, 29mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
3122simp3d 1144 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑈𝐶)
3223, 30, 313jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
3318, 32jaodan 959 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
34 ixxun.4 . . . . . . . 8 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
3534elixx1 13261 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
362, 13, 35syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
3736biimpar 477 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)) → 𝑤 ∈ (𝐴𝑄𝐶))
3833, 37syldan 591 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤 ∈ (𝐴𝑄𝐶))
39 exmid 894 . . . . 5 (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)
4036biimpa 476 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
4140simp1d 1142 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤 ∈ ℝ*)
4240simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐴𝑅𝑤)
4341, 42jca 511 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
44 df-3an 1088 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵))
456, 44bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4645adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4743, 46mpbirand 707 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ 𝑤𝑆𝐵))
48 3anan12 1095 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶)))
4921, 48bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5049adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5140simp3d 1144 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤𝑈𝐶)
5241, 51jca 511 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝑤𝑈𝐶))
5352biantrud 531 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
543adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐵 ∈ ℝ*)
55 ixxun.3 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5654, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5750, 53, 563bitr2d 307 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ ¬ 𝑤𝑆𝐵))
5847, 57orbi12d 918 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)))
5939, 58mpbiri 258 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
6038, 59impbida 800 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
611, 60bitrid 283 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
6261eqrdv 2731 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  cun 3896   class class class wbr 5095  (class class class)co 7355  cmpo 7357  *cxr 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-xr 11161
This theorem is referenced by:  icoun  13382  ioounsn  13384  snunioo  13385  snunico  13386  snunioc  13387  ioojoin  13390  leordtval2  23147  lecldbas  23154  icopnfcld  24702  iocmnfcld  24703  ioombl  25513  ismbf3d  25602  joiniooico  32782  asindmre  37816  snunioo1  45674
  Copyright terms: Public domain W3C validator