MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Visualization version   GIF version

Theorem ixxun 13298
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
ixxun.4 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
ixxun.5 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
ixxun.6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxun (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝑄   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 4112 . . 3 (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
2 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐵 ∈ ℝ*)
4 ixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13291 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
62, 3, 5syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
76biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
87simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
97simp2d 1143 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
107simp3d 1144 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
11 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵𝑋𝐶)
123adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 simpl3 1194 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐶 ∈ ℝ*)
1413adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐶 ∈ ℝ*)
15 ixxun.5 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
168, 12, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
1710, 11, 16mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑈𝐶)
188, 9, 173jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
19 ixxun.2 . . . . . . . . . . 11 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
2019elixx1 13291 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
213, 13, 20syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
2221biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
2322simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
24 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
2522simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
262adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
273adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
28 ixxun.6 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
2926, 27, 23, 28syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
3024, 25, 29mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
3122simp3d 1144 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑈𝐶)
3223, 30, 313jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
3318, 32jaodan 959 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
34 ixxun.4 . . . . . . . 8 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
3534elixx1 13291 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
362, 13, 35syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
3736biimpar 477 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)) → 𝑤 ∈ (𝐴𝑄𝐶))
3833, 37syldan 591 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤 ∈ (𝐴𝑄𝐶))
39 exmid 894 . . . . 5 (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)
4036biimpa 476 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
4140simp1d 1142 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤 ∈ ℝ*)
4240simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐴𝑅𝑤)
4341, 42jca 511 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
44 df-3an 1088 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵))
456, 44bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4645adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4743, 46mpbirand 707 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ 𝑤𝑆𝐵))
48 3anan12 1095 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶)))
4921, 48bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5049adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5140simp3d 1144 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤𝑈𝐶)
5241, 51jca 511 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝑤𝑈𝐶))
5352biantrud 531 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
543adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐵 ∈ ℝ*)
55 ixxun.3 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5654, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5750, 53, 563bitr2d 307 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ ¬ 𝑤𝑆𝐵))
5847, 57orbi12d 918 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)))
5939, 58mpbiri 258 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
6038, 59impbida 800 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
611, 60bitrid 283 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
6261eqrdv 2727 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  cun 3909   class class class wbr 5102  (class class class)co 7369  cmpo 7371  *cxr 11183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-xr 11188
This theorem is referenced by:  icoun  13412  ioounsn  13414  snunioo  13415  snunico  13416  snunioc  13417  ioojoin  13420  leordtval2  23075  lecldbas  23082  icopnfcld  24631  iocmnfcld  24632  ioombl  25442  ismbf3d  25531  joiniooico  32670  asindmre  37670  snunioo1  45483
  Copyright terms: Public domain W3C validator