MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Visualization version   GIF version

Theorem ixxun 13378
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
ixxun.4 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
ixxun.5 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
ixxun.6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxun (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝑄   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 4128 . . 3 (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
2 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐵 ∈ ℝ*)
4 ixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13371 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
62, 3, 5syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
76biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
87simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
97simp2d 1143 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
107simp3d 1144 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
11 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵𝑋𝐶)
123adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 simpl3 1194 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐶 ∈ ℝ*)
1413adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐶 ∈ ℝ*)
15 ixxun.5 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
168, 12, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
1710, 11, 16mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑈𝐶)
188, 9, 173jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
19 ixxun.2 . . . . . . . . . . 11 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
2019elixx1 13371 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
213, 13, 20syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
2221biimpa 476 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
2322simp1d 1142 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
24 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
2522simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
262adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
273adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
28 ixxun.6 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
2926, 27, 23, 28syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
3024, 25, 29mp2and 699 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
3122simp3d 1144 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑈𝐶)
3223, 30, 313jca 1128 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
3318, 32jaodan 959 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
34 ixxun.4 . . . . . . . 8 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
3534elixx1 13371 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
362, 13, 35syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
3736biimpar 477 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)) → 𝑤 ∈ (𝐴𝑄𝐶))
3833, 37syldan 591 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤 ∈ (𝐴𝑄𝐶))
39 exmid 894 . . . . 5 (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)
4036biimpa 476 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
4140simp1d 1142 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤 ∈ ℝ*)
4240simp2d 1143 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐴𝑅𝑤)
4341, 42jca 511 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
44 df-3an 1088 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵))
456, 44bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4645adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4743, 46mpbirand 707 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ 𝑤𝑆𝐵))
48 3anan12 1095 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶)))
4921, 48bitrdi 287 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5049adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5140simp3d 1144 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤𝑈𝐶)
5241, 51jca 511 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝑤𝑈𝐶))
5352biantrud 531 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
543adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐵 ∈ ℝ*)
55 ixxun.3 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5654, 41, 55syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5750, 53, 563bitr2d 307 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ ¬ 𝑤𝑆𝐵))
5847, 57orbi12d 918 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)))
5939, 58mpbiri 258 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
6038, 59impbida 800 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
611, 60bitrid 283 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
6261eqrdv 2733 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  cun 3924   class class class wbr 5119  (class class class)co 7405  cmpo 7407  *cxr 11268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-xr 11273
This theorem is referenced by:  icoun  13492  ioounsn  13494  snunioo  13495  snunico  13496  snunioc  13497  ioojoin  13500  leordtval2  23150  lecldbas  23157  icopnfcld  24706  iocmnfcld  24707  ioombl  25518  ismbf3d  25607  joiniooico  32751  asindmre  37727  snunioo1  45541
  Copyright terms: Public domain W3C validator