MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxun Structured version   Visualization version   GIF version

Theorem ixxun 13375
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
ixxun.4 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
ixxun.5 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
ixxun.6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
Assertion
Ref Expression
ixxun (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂   𝑤,𝑄   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧   𝑤,𝑊   𝑤,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑄(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ixxun
StepHypRef Expression
1 elun 4145 . . 3 (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
2 simpl1 1188 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1189 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐵 ∈ ℝ*)
4 ixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
54elixx1 13368 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
62, 3, 5syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
76biimpa 475 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
87simp1d 1139 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
97simp2d 1140 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
107simp3d 1141 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
11 simplrr 776 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵𝑋𝐶)
123adantr 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 simpl3 1190 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → 𝐶 ∈ ℝ*)
1413adantr 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐶 ∈ ℝ*)
15 ixxun.5 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
168, 12, 14, 15syl3anc 1368 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → ((𝑤𝑆𝐵𝐵𝑋𝐶) → 𝑤𝑈𝐶))
1710, 11, 16mp2and 697 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑈𝐶)
188, 9, 173jca 1125 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
19 ixxun.2 . . . . . . . . . . 11 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
2019elixx1 13368 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
213, 13, 20syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
2221biimpa 475 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
2322simp1d 1139 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
24 simplrl 775 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑊𝐵)
2522simp2d 1140 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
262adantr 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴 ∈ ℝ*)
273adantr 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
28 ixxun.6 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
2926, 27, 23, 28syl3anc 1368 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))
3024, 25, 29mp2and 697 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐴𝑅𝑤)
3122simp3d 1141 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤𝑈𝐶)
3223, 30, 313jca 1125 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
3318, 32jaodan 955 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
34 ixxun.4 . . . . . . . 8 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑈𝑦)})
3534elixx1 13368 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
362, 13, 35syl2anc 582 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑄𝐶) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)))
3736biimpar 476 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶)) → 𝑤 ∈ (𝐴𝑄𝐶))
3833, 37syldan 589 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤 ∈ (𝐴𝑄𝐶))
39 exmid 892 . . . . 5 (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)
4036biimpa 475 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑈𝐶))
4140simp1d 1139 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤 ∈ ℝ*)
4240simp2d 1140 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐴𝑅𝑤)
4341, 42jca 510 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
44 df-3an 1086 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵))
456, 44bitrdi 286 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4645adantr 479 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ ((𝑤 ∈ ℝ*𝐴𝑅𝑤) ∧ 𝑤𝑆𝐵)))
4743, 46mpbirand 705 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ 𝑤𝑆𝐵))
48 3anan12 1093 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶)))
4921, 48bitrdi 286 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5049adantr 479 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
5140simp3d 1141 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝑤𝑈𝐶)
5241, 51jca 510 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ ℝ*𝑤𝑈𝐶))
5352biantrud 530 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ (𝐵𝑇𝑤 ∧ (𝑤 ∈ ℝ*𝑤𝑈𝐶))))
543adantr 479 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → 𝐵 ∈ ℝ*)
55 ixxun.3 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5654, 41, 55syl2anc 582 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
5750, 53, 563bitr2d 306 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ ¬ 𝑤𝑆𝐵))
5847, 57orbi12d 916 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ (𝑤𝑆𝐵 ∨ ¬ 𝑤𝑆𝐵)))
5939, 58mpbiri 257 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) ∧ 𝑤 ∈ (𝐴𝑄𝐶)) → (𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)))
6038, 59impbida 799 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝑤 ∈ (𝐴𝑂𝐵) ∨ 𝑤 ∈ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
611, 60bitrid 282 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → (𝑤 ∈ ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) ↔ 𝑤 ∈ (𝐴𝑄𝐶)))
6261eqrdv 2723 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  {crab 3418  cun 3942   class class class wbr 5149  (class class class)co 7419  cmpo 7421  *cxr 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-xr 11284
This theorem is referenced by:  icoun  13487  ioounsn  13489  snunioo  13490  snunico  13491  snunioc  13492  ioojoin  13495  leordtval2  23160  lecldbas  23167  icopnfcld  24728  iocmnfcld  24729  ioombl  25538  ismbf3d  25627  joiniooico  32624  asindmre  37307  snunioo1  45035
  Copyright terms: Public domain W3C validator