Step | Hyp | Ref
| Expression |
1 | | iunss 4971 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉) |
2 | | eliun 4925 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | 2 | imbi1i 349 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
4 | | r19.23v 3207 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
5 | 3, 4 | bitr4i 277 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
6 | 5 | albii 1823 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
7 | | df-ral 3068 |
. . . . . . . 8
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
8 | | df-ral 3068 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
9 | 8 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
10 | | ralcom4 3161 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
11 | 9, 10 | bitri 274 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
12 | 6, 7, 11 | 3bitr4i 302 |
. . . . . . 7
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
13 | 1, 12 | anbi12i 626 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
14 | | r19.26 3094 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
15 | 13, 14 | bitr4i 277 |
. . . . 5
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
16 | | eliin 4926 |
. . . . . 6
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵))) |
17 | | iunocv.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
21 | | inocv.o |
. . . . . . . . . 10
⊢ ⊥ =
(ocv‘𝑊) |
22 | 17, 18, 19, 20, 21 | elocv 20785 |
. . . . . . . . 9
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
23 | | 3anan12 1094 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
24 | 22, 23 | bitri 274 |
. . . . . . . 8
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
25 | 24 | baib 535 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
26 | 25 | ralbidv 3120 |
. . . . . 6
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
27 | 16, 26 | bitr2d 279 |
. . . . 5
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
28 | 15, 27 | syl5bb 282 |
. . . 4
⊢ (𝑧 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
29 | 28 | pm5.32i 574 |
. . 3
⊢ ((𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
30 | 17, 18, 19, 20, 21 | elocv 20785 |
. . . 4
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
31 | | 3anan12 1094 |
. . . 4
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
32 | 30, 31 | bitri 274 |
. . 3
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
33 | | elin 3899 |
. . 3
⊢ (𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
34 | 29, 32, 33 | 3bitr4i 302 |
. 2
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
35 | 34 | eqriv 2735 |
1
⊢ ( ⊥
‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) |