MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Visualization version   GIF version

Theorem iunocv 20827
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o = (ocv‘𝑊)
iunocv.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
iunocv ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   (𝑥)

Proof of Theorem iunocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 4971 . . . . . . 7 ( 𝑥𝐴 𝐵𝑉 ↔ ∀𝑥𝐴 𝐵𝑉)
2 eliun 4925 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32imbi1i 352 . . . . . . . . . 10 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
4 r19.23v 3281 . . . . . . . . . 10 (∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
53, 4bitr4i 280 . . . . . . . . 9 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
65albii 1820 . . . . . . . 8 (∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7 df-ral 3145 . . . . . . . 8 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8 df-ral 3145 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
98ralbii 3167 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
10 ralcom4 3237 . . . . . . . . 9 (∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
119, 10bitri 277 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
126, 7, 113bitr4i 305 . . . . . . 7 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
131, 12anbi12i 628 . . . . . 6 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 r19.26 3172 . . . . . 6 (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1513, 14bitr4i 280 . . . . 5 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
16 eliin 4926 . . . . . 6 (𝑧𝑉 → (𝑧 𝑥𝐴 ( 𝐵) ↔ ∀𝑥𝐴 𝑧 ∈ ( 𝐵)))
17 iunocv.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2823 . . . . . . . . . 10 (·𝑖𝑊) = (·𝑖𝑊)
19 eqid 2823 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2823 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
21 inocv.o . . . . . . . . . 10 = (ocv‘𝑊)
2217, 18, 19, 20, 21elocv 20814 . . . . . . . . 9 (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
23 3anan12 1092 . . . . . . . . 9 ((𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2422, 23bitri 277 . . . . . . . 8 (𝑧 ∈ ( 𝐵) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2524baib 538 . . . . . . 7 (𝑧𝑉 → (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2625ralbidv 3199 . . . . . 6 (𝑧𝑉 → (∀𝑥𝐴 𝑧 ∈ ( 𝐵) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2716, 26bitr2d 282 . . . . 5 (𝑧𝑉 → (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2815, 27syl5bb 285 . . . 4 (𝑧𝑉 → (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2928pm5.32i 577 . . 3 ((𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3017, 18, 19, 20, 21elocv 20814 . . . 4 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ ( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
31 3anan12 1092 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
3230, 31bitri 277 . . 3 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
33 elin 4171 . . 3 (𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3429, 32, 333bitr4i 305 . 2 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)))
3534eqriv 2820 1 ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938   ciun 4921   ciin 4922  cfv 6357  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570  ·𝑖cip 16572  0gc0g 16715  ocvcocv 20806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-ocv 20809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator