MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Visualization version   GIF version

Theorem iunocv 20886
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o = (ocv‘𝑊)
iunocv.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
iunocv ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   (𝑥)

Proof of Theorem iunocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 4975 . . . . . . 7 ( 𝑥𝐴 𝐵𝑉 ↔ ∀𝑥𝐴 𝐵𝑉)
2 eliun 4928 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32imbi1i 350 . . . . . . . . . 10 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
4 r19.23v 3208 . . . . . . . . . 10 (∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
53, 4bitr4i 277 . . . . . . . . 9 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
65albii 1822 . . . . . . . 8 (∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7 df-ral 3069 . . . . . . . 8 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8 df-ral 3069 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
98ralbii 3092 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
10 ralcom4 3164 . . . . . . . . 9 (∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
119, 10bitri 274 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
126, 7, 113bitr4i 303 . . . . . . 7 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
131, 12anbi12i 627 . . . . . 6 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 r19.26 3095 . . . . . 6 (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1513, 14bitr4i 277 . . . . 5 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
16 eliin 4929 . . . . . 6 (𝑧𝑉 → (𝑧 𝑥𝐴 ( 𝐵) ↔ ∀𝑥𝐴 𝑧 ∈ ( 𝐵)))
17 iunocv.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2738 . . . . . . . . . 10 (·𝑖𝑊) = (·𝑖𝑊)
19 eqid 2738 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2738 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
21 inocv.o . . . . . . . . . 10 = (ocv‘𝑊)
2217, 18, 19, 20, 21elocv 20873 . . . . . . . . 9 (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
23 3anan12 1095 . . . . . . . . 9 ((𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2422, 23bitri 274 . . . . . . . 8 (𝑧 ∈ ( 𝐵) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2524baib 536 . . . . . . 7 (𝑧𝑉 → (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2625ralbidv 3112 . . . . . 6 (𝑧𝑉 → (∀𝑥𝐴 𝑧 ∈ ( 𝐵) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2716, 26bitr2d 279 . . . . 5 (𝑧𝑉 → (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2815, 27bitrid 282 . . . 4 (𝑧𝑉 → (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2928pm5.32i 575 . . 3 ((𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3017, 18, 19, 20, 21elocv 20873 . . . 4 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ ( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
31 3anan12 1095 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
3230, 31bitri 274 . . 3 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
33 elin 3903 . . 3 (𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3429, 32, 333bitr4i 303 . 2 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)))
3534eqriv 2735 1 ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   ciun 4924   ciin 4925  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965  ·𝑖cip 16967  0gc0g 17150  ocvcocv 20865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-ocv 20868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator