MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Visualization version   GIF version

Theorem iunocv 20370
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o = (ocv‘𝑊)
iunocv.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
iunocv ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   (𝑥)

Proof of Theorem iunocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 4932 . . . . . . 7 ( 𝑥𝐴 𝐵𝑉 ↔ ∀𝑥𝐴 𝐵𝑉)
2 eliun 4885 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32imbi1i 353 . . . . . . . . . 10 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
4 r19.23v 3238 . . . . . . . . . 10 (∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
53, 4bitr4i 281 . . . . . . . . 9 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
65albii 1821 . . . . . . . 8 (∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7 df-ral 3111 . . . . . . . 8 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8 df-ral 3111 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
98ralbii 3133 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
10 ralcom4 3198 . . . . . . . . 9 (∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
119, 10bitri 278 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
126, 7, 113bitr4i 306 . . . . . . 7 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
131, 12anbi12i 629 . . . . . 6 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 r19.26 3137 . . . . . 6 (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1513, 14bitr4i 281 . . . . 5 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
16 eliin 4886 . . . . . 6 (𝑧𝑉 → (𝑧 𝑥𝐴 ( 𝐵) ↔ ∀𝑥𝐴 𝑧 ∈ ( 𝐵)))
17 iunocv.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2798 . . . . . . . . . 10 (·𝑖𝑊) = (·𝑖𝑊)
19 eqid 2798 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2798 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
21 inocv.o . . . . . . . . . 10 = (ocv‘𝑊)
2217, 18, 19, 20, 21elocv 20357 . . . . . . . . 9 (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
23 3anan12 1093 . . . . . . . . 9 ((𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2422, 23bitri 278 . . . . . . . 8 (𝑧 ∈ ( 𝐵) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2524baib 539 . . . . . . 7 (𝑧𝑉 → (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2625ralbidv 3162 . . . . . 6 (𝑧𝑉 → (∀𝑥𝐴 𝑧 ∈ ( 𝐵) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2716, 26bitr2d 283 . . . . 5 (𝑧𝑉 → (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2815, 27syl5bb 286 . . . 4 (𝑧𝑉 → (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2928pm5.32i 578 . . 3 ((𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3017, 18, 19, 20, 21elocv 20357 . . . 4 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ ( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
31 3anan12 1093 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
3230, 31bitri 278 . . 3 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
33 elin 3897 . . 3 (𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3429, 32, 333bitr4i 306 . 2 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)))
3534eqriv 2795 1 ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881   ciun 4881   ciin 4882  cfv 6324  (class class class)co 7135  Basecbs 16475  Scalarcsca 16560  ·𝑖cip 16562  0gc0g 16705  ocvcocv 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-ocv 20352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator