MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Visualization version   GIF version

Theorem iunocv 21218
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o = (ocv‘𝑊)
iunocv.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
iunocv ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   (𝑥)

Proof of Theorem iunocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 5047 . . . . . . 7 ( 𝑥𝐴 𝐵𝑉 ↔ ∀𝑥𝐴 𝐵𝑉)
2 eliun 5000 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32imbi1i 350 . . . . . . . . . 10 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
4 r19.23v 3183 . . . . . . . . . 10 (∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
53, 4bitr4i 278 . . . . . . . . 9 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
65albii 1822 . . . . . . . 8 (∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7 df-ral 3063 . . . . . . . 8 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8 df-ral 3063 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
98ralbii 3094 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
10 ralcom4 3284 . . . . . . . . 9 (∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
119, 10bitri 275 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
126, 7, 113bitr4i 303 . . . . . . 7 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
131, 12anbi12i 628 . . . . . 6 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 r19.26 3112 . . . . . 6 (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1513, 14bitr4i 278 . . . . 5 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
16 eliin 5001 . . . . . 6 (𝑧𝑉 → (𝑧 𝑥𝐴 ( 𝐵) ↔ ∀𝑥𝐴 𝑧 ∈ ( 𝐵)))
17 iunocv.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2733 . . . . . . . . . 10 (·𝑖𝑊) = (·𝑖𝑊)
19 eqid 2733 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2733 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
21 inocv.o . . . . . . . . . 10 = (ocv‘𝑊)
2217, 18, 19, 20, 21elocv 21205 . . . . . . . . 9 (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
23 3anan12 1097 . . . . . . . . 9 ((𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2422, 23bitri 275 . . . . . . . 8 (𝑧 ∈ ( 𝐵) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2524baib 537 . . . . . . 7 (𝑧𝑉 → (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2625ralbidv 3178 . . . . . 6 (𝑧𝑉 → (∀𝑥𝐴 𝑧 ∈ ( 𝐵) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2716, 26bitr2d 280 . . . . 5 (𝑧𝑉 → (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2815, 27bitrid 283 . . . 4 (𝑧𝑉 → (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2928pm5.32i 576 . . 3 ((𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3017, 18, 19, 20, 21elocv 21205 . . . 4 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ ( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
31 3anan12 1097 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
3230, 31bitri 275 . . 3 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
33 elin 3963 . . 3 (𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3429, 32, 333bitr4i 303 . 2 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)))
3534eqriv 2730 1 ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cin 3946  wss 3947   ciun 4996   ciin 4997  cfv 6540  (class class class)co 7404  Basecbs 17140  Scalarcsca 17196  ·𝑖cip 17198  0gc0g 17381  ocvcocv 21197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7407  df-ocv 21200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator