MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunocv Structured version   Visualization version   GIF version

Theorem iunocv 21122
Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
inocv.o = (ocv‘𝑊)
iunocv.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
iunocv ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   (𝑥)

Proof of Theorem iunocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunss 5010 . . . . . . 7 ( 𝑥𝐴 𝐵𝑉 ↔ ∀𝑥𝐴 𝐵𝑉)
2 eliun 4963 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32imbi1i 349 . . . . . . . . . 10 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
4 r19.23v 3175 . . . . . . . . . 10 (∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥𝐴 𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
53, 4bitr4i 277 . . . . . . . . 9 ((𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
65albii 1821 . . . . . . . 8 (∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7 df-ral 3061 . . . . . . . 8 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 𝑥𝐴 𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8 df-ral 3061 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
98ralbii 3092 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
10 ralcom4 3267 . . . . . . . . 9 (∀𝑥𝐴𝑦(𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
119, 10bitri 274 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵 → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
126, 7, 113bitr4i 302 . . . . . . 7 (∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
131, 12anbi12i 627 . . . . . 6 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 r19.26 3110 . . . . . 6 (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1513, 14bitr4i 277 . . . . 5 (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
16 eliin 4964 . . . . . 6 (𝑧𝑉 → (𝑧 𝑥𝐴 ( 𝐵) ↔ ∀𝑥𝐴 𝑧 ∈ ( 𝐵)))
17 iunocv.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2731 . . . . . . . . . 10 (·𝑖𝑊) = (·𝑖𝑊)
19 eqid 2731 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2731 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
21 inocv.o . . . . . . . . . 10 = (ocv‘𝑊)
2217, 18, 19, 20, 21elocv 21109 . . . . . . . . 9 (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
23 3anan12 1096 . . . . . . . . 9 ((𝐵𝑉𝑧𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2422, 23bitri 274 . . . . . . . 8 (𝑧 ∈ ( 𝐵) ↔ (𝑧𝑉 ∧ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2524baib 536 . . . . . . 7 (𝑧𝑉 → (𝑧 ∈ ( 𝐵) ↔ (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2625ralbidv 3170 . . . . . 6 (𝑧𝑉 → (∀𝑥𝐴 𝑧 ∈ ( 𝐵) ↔ ∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2716, 26bitr2d 279 . . . . 5 (𝑧𝑉 → (∀𝑥𝐴 (𝐵𝑉 ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2815, 27bitrid 282 . . . 4 (𝑧𝑉 → (( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 𝑥𝐴 ( 𝐵)))
2928pm5.32i 575 . . 3 ((𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3017, 18, 19, 20, 21elocv 21109 . . . 4 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ ( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
31 3anan12 1096 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑧𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
3230, 31bitri 274 . . 3 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ (𝑧𝑉 ∧ ( 𝑥𝐴 𝐵𝑉 ∧ ∀𝑦 𝑥𝐴 𝐵(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
33 elin 3929 . . 3 (𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)) ↔ (𝑧𝑉𝑧 𝑥𝐴 ( 𝐵)))
3429, 32, 333bitr4i 302 . 2 (𝑧 ∈ ( 𝑥𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 𝑥𝐴 ( 𝐵)))
3534eqriv 2728 1 ( 𝑥𝐴 𝐵) = (𝑉 𝑥𝐴 ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3060  wrex 3069  cin 3912  wss 3913   ciun 4959   ciin 4960  cfv 6501  (class class class)co 7362  Basecbs 17094  Scalarcsca 17150  ·𝑖cip 17152  0gc0g 17335  ocvcocv 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-ocv 21104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator