| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iunss 5045 | . . . . . . 7
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉) | 
| 2 |  | eliun 4995 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 3 | 2 | imbi1i 349 | . . . . . . . . . 10
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 4 |  | r19.23v 3183 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 5 | 3, 4 | bitr4i 278 | . . . . . . . . 9
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 6 | 5 | albii 1819 | . . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 7 |  | df-ral 3062 | . . . . . . . 8
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 8 |  | df-ral 3062 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 9 | 8 | ralbii 3093 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 10 |  | ralcom4 3286 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 11 | 9, 10 | bitri 275 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 12 | 6, 7, 11 | 3bitr4i 303 | . . . . . . 7
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | 
| 13 | 1, 12 | anbi12i 628 | . . . . . 6
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 14 |  | r19.26 3111 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 15 | 13, 14 | bitr4i 278 | . . . . 5
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 16 |  | eliin 4996 | . . . . . 6
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵))) | 
| 17 |  | iunocv.v | . . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) | 
| 18 |  | eqid 2737 | . . . . . . . . . 10
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) | 
| 19 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 20 |  | eqid 2737 | . . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) | 
| 21 |  | inocv.o | . . . . . . . . . 10
⊢  ⊥ =
(ocv‘𝑊) | 
| 22 | 17, 18, 19, 20, 21 | elocv 21686 | . . . . . . . . 9
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 23 |  | 3anan12 1096 | . . . . . . . . 9
⊢ ((𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 24 | 22, 23 | bitri 275 | . . . . . . . 8
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 25 | 24 | baib 535 | . . . . . . 7
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 26 | 25 | ralbidv 3178 | . . . . . 6
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 27 | 16, 26 | bitr2d 280 | . . . . 5
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) | 
| 28 | 15, 27 | bitrid 283 | . . . 4
⊢ (𝑧 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) | 
| 29 | 28 | pm5.32i 574 | . . 3
⊢ ((𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) | 
| 30 | 17, 18, 19, 20, 21 | elocv 21686 | . . . 4
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 31 |  | 3anan12 1096 | . . . 4
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 32 | 30, 31 | bitri 275 | . . 3
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 33 |  | elin 3967 | . . 3
⊢ (𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) | 
| 34 | 29, 32, 33 | 3bitr4i 303 | . 2
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) | 
| 35 | 34 | eqriv 2734 | 1
⊢ ( ⊥
‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) |