| Step | Hyp | Ref
| Expression |
| 1 | | iunss 5021 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉) |
| 2 | | eliun 4971 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | 2 | imbi1i 349 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 4 | | r19.23v 3168 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 5 | 3, 4 | bitr4i 278 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 6 | 5 | albii 1819 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 7 | | df-ral 3052 |
. . . . . . . 8
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 8 | | df-ral 3052 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 9 | 8 | ralbii 3082 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 10 | | ralcom4 3268 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 9, 10 | bitri 275 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 6, 7, 11 | 3bitr4i 303 |
. . . . . . 7
⊢
(∀𝑦 ∈
∪ 𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
| 13 | 1, 12 | anbi12i 628 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 14 | | r19.26 3098 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 15 | 13, 14 | bitr4i 278 |
. . . . 5
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 16 | | eliin 4972 |
. . . . . 6
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵))) |
| 17 | | iunocv.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
| 18 | | eqid 2735 |
. . . . . . . . . 10
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
| 19 | | eqid 2735 |
. . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 20 | | eqid 2735 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 21 | | inocv.o |
. . . . . . . . . 10
⊢ ⊥ =
(ocv‘𝑊) |
| 22 | 17, 18, 19, 20, 21 | elocv 21626 |
. . . . . . . . 9
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 23 | | 3anan12 1095 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 24 | 22, 23 | bitri 275 |
. . . . . . . 8
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 25 | 24 | baib 535 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑉 → (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 26 | 25 | ralbidv 3163 |
. . . . . 6
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 27 | 16, 26 | bitr2d 280 |
. . . . 5
⊢ (𝑧 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
| 28 | 15, 27 | bitrid 283 |
. . . 4
⊢ (𝑧 ∈ 𝑉 → ((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
| 29 | 28 | pm5.32i 574 |
. . 3
⊢ ((𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
| 30 | 17, 18, 19, 20, 21 | elocv 21626 |
. . . 4
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 31 | | 3anan12 1095 |
. . . 4
⊢
((∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 32 | 30, 31 | bitri 275 |
. . 3
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ (𝑧 ∈ 𝑉 ∧ (∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 33 | | elin 3942 |
. . 3
⊢ (𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
| 34 | 29, 32, 33 | 3bitr4i 303 |
. 2
⊢ (𝑧 ∈ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) ↔ 𝑧 ∈ (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵))) |
| 35 | 34 | eqriv 2732 |
1
⊢ ( ⊥
‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩
𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) |