| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bigoval 48470 | . . . . 5
⊢ (𝐺 ∈ (ℝ
↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) | 
| 2 | 1 | eleq2d 2827 | . . . 4
⊢ (𝐺 ∈ (ℝ
↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))})) | 
| 3 |  | dmeq 5914 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | 
| 4 | 3 | ineq1d 4219 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞))) | 
| 5 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | 
| 6 | 5 | breq1d 5153 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | 
| 7 | 4, 6 | raleqbidv 3346 | . . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | 
| 8 | 7 | 2rexbidv 3222 | . . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | 
| 9 | 8 | elrab 3692 | . . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))} ↔ (𝐹 ∈ (ℝ ↑pm
ℝ) ∧ ∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | 
| 10 | 2, 9 | bitrdi 287 | . . 3
⊢ (𝐺 ∈ (ℝ
↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm
ℝ) ∧ ∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | 
| 11 | 10 | pm5.32i 574 | . 2
⊢ ((𝐺 ∈ (ℝ
↑pm ℝ) ∧ 𝐹 ∈ (Ο‘𝐺)) ↔ (𝐺 ∈ (ℝ ↑pm
ℝ) ∧ (𝐹 ∈
(ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | 
| 12 |  | elbigofrcl 48471 | . . 3
⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm
ℝ)) | 
| 13 | 12 | pm4.71ri 560 | . 2
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐺 ∈ (ℝ ↑pm
ℝ) ∧ 𝐹 ∈
(Ο‘𝐺))) | 
| 14 |  | 3anan12 1096 | . 2
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm
ℝ) ∧ ∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ (𝐺 ∈ (ℝ ↑pm
ℝ) ∧ (𝐹 ∈
(ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | 
| 15 | 11, 13, 14 | 3bitr4i 303 | 1
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |