Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo Structured version   Visualization version   GIF version

Theorem elbigo 48531
Description: Properties of a function of order G(x). (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
elbigo (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑚,𝑦   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elbigo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bigoval 48529 . . . . 5 (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
21eleq2d 2820 . . . 4 (𝐺 ∈ (ℝ ↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))}))
3 dmeq 5883 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43ineq1d 4194 . . . . . . 7 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
5 fveq1 6875 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
65breq1d 5129 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
74, 6raleqbidv 3325 . . . . . 6 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
872rexbidv 3206 . . . . 5 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
98elrab 3671 . . . 4 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))} ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
102, 9bitrdi 287 . . 3 (𝐺 ∈ (ℝ ↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
1110pm5.32i 574 . 2 ((𝐺 ∈ (ℝ ↑pm ℝ) ∧ 𝐹 ∈ (Ο‘𝐺)) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
12 elbigofrcl 48530 . . 3 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
1312pm4.71ri 560 . 2 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ 𝐹 ∈ (Ο‘𝐺)))
14 3anan12 1095 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
1511, 13, 143bitr4i 303 1 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cin 3925   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  pm cpm 8841  cr 11128   · cmul 11134  +∞cpnf 11266  cle 11270  [,)cico 13364  Οcbigo 48527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-bigo 48528
This theorem is referenced by:  elbigo2  48532  elbigof  48534  elbigodm  48535
  Copyright terms: Public domain W3C validator