MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlks Structured version   Visualization version   GIF version

Theorem iswwlks 27786
Description: A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Hypotheses
Ref Expression
wwlks.v 𝑉 = (Vtx‘𝐺)
wwlks.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iswwlks (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑉(𝑖)

Proof of Theorem iswwlks
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2997 . . . 4 (𝑤 = 𝑊 → (𝑤 ≠ ∅ ↔ 𝑊 ≠ ∅))
2 fveq2 6686 . . . . . . 7 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
32oveq1d 7197 . . . . . 6 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
43oveq2d 7198 . . . . 5 (𝑤 = 𝑊 → (0..^((♯‘𝑤) − 1)) = (0..^((♯‘𝑊) − 1)))
5 fveq1 6685 . . . . . . 7 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
6 fveq1 6685 . . . . . . 7 (𝑤 = 𝑊 → (𝑤‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
75, 6preq12d 4642 . . . . . 6 (𝑤 = 𝑊 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
87eleq1d 2818 . . . . 5 (𝑤 = 𝑊 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
94, 8raleqbidv 3305 . . . 4 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
101, 9anbi12d 634 . . 3 (𝑤 = 𝑊 → ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
1110elrab 3593 . 2 (𝑊 ∈ {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)} ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
12 wwlks.v . . . 4 𝑉 = (Vtx‘𝐺)
13 wwlks.e . . . 4 𝐸 = (Edg‘𝐺)
1412, 13wwlks 27785 . . 3 (WWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)}
1514eleq2i 2825 . 2 (𝑊 ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)})
16 3anan12 1097 . 2 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ (𝑊 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
1711, 15, 163bitr4i 306 1 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  {crab 3058  c0 4221  {cpr 4528  cfv 6349  (class class class)co 7182  0cc0 10627  1c1 10628   + caddc 10630  cmin 10960  ..^cfzo 13136  chash 13794  Word cword 13967  Vtxcvtx 26953  Edgcedg 27004  WWalkscwwlks 27775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-fzo 13137  df-hash 13795  df-word 13968  df-wwlks 27780
This theorem is referenced by:  iswwlksnx  27790  wwlkbp  27791  wwlknp  27793  wwlksn0s  27811  0enwwlksnge1  27814  wlkiswwlks1  27817  wlkiswwlks2  27825  wlkiswwlksupgr2  27827  wwlksm1edg  27831  wlknewwlksn  27837  wwlksnred  27842  wwlksnext  27843  wwlksnfi  27856  rusgrnumwwlkl1  27918  clwwlkel  27995  clwwlkf  27996  clwwlkwwlksb  28003
  Copyright terms: Public domain W3C validator