MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 21596
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o = (ocv‘𝑊)
Assertion
Ref Expression
unocv ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4156 . . . . . . 7 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴𝐵) ⊆ (Base‘𝑊))
21bicomi 224 . . . . . 6 ((𝐴𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)))
3 ralunb 4163 . . . . . 6 (∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
42, 3anbi12i 628 . . . . 5 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 an4 656 . . . . 5 (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
64, 5bitri 275 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
76anbi2i 623 . . 3 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
8 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2730 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
10 eqid 2730 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2730 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 inocv.o . . . . 5 = (ocv‘𝑊)
138, 9, 10, 11, 12elocv 21584 . . . 4 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 3anan12 1095 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1513, 14bitri 275 . . 3 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
168, 9, 10, 11, 12elocv 21584 . . . . . 6 (𝑧 ∈ ( 𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
17 3anan12 1095 . . . . . 6 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1816, 17bitri 275 . . . . 5 (𝑧 ∈ ( 𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
198, 9, 10, 11, 12elocv 21584 . . . . . 6 (𝑧 ∈ ( 𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
20 3anan12 1095 . . . . . 6 ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2119, 20bitri 275 . . . . 5 (𝑧 ∈ ( 𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2218, 21anbi12i 628 . . . 4 ((𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
23 elin 3933 . . . 4 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)))
24 anandi 676 . . . 4 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
2522, 23, 243bitr4i 303 . . 3 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
267, 15, 253bitr4i 303 . 2 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ 𝑧 ∈ (( 𝐴) ∩ ( 𝐵)))
2726eqriv 2727 1 ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cun 3915  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230  ·𝑖cip 17232  0gc0g 17409  ocvcocv 21576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-ocv 21579
This theorem is referenced by:  cssincl  21604
  Copyright terms: Public domain W3C validator