MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 21224
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o βŠ₯ = (ocvβ€˜π‘Š)
Assertion
Ref Expression
unocv ( βŠ₯ β€˜(𝐴 βˆͺ 𝐡)) = (( βŠ₯ β€˜π΄) ∩ ( βŠ₯ β€˜π΅))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4183 . . . . . . 7 ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝐡 βŠ† (Baseβ€˜π‘Š)) ↔ (𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š))
21bicomi 223 . . . . . 6 ((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ↔ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝐡 βŠ† (Baseβ€˜π‘Š)))
3 ralunb 4190 . . . . . 6 (βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ↔ (βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))
42, 3anbi12i 627 . . . . 5 (((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ↔ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝐡 βŠ† (Baseβ€˜π‘Š)) ∧ (βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
5 an4 654 . . . . 5 (((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝐡 βŠ† (Baseβ€˜π‘Š)) ∧ (βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))) ↔ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
64, 5bitri 274 . . . 4 (((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ↔ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
76anbi2i 623 . . 3 ((𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))))
8 eqid 2732 . . . . 5 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
9 eqid 2732 . . . . 5 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
10 eqid 2732 . . . . 5 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
11 eqid 2732 . . . . 5 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
12 inocv.o . . . . 5 βŠ₯ = (ocvβ€˜π‘Š)
138, 9, 10, 11, 12elocv 21212 . . . 4 (𝑧 ∈ ( βŠ₯ β€˜(𝐴 βˆͺ 𝐡)) ↔ ((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))
14 3anan12 1096 . . . 4 (((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
1513, 14bitri 274 . . 3 (𝑧 ∈ ( βŠ₯ β€˜(𝐴 βˆͺ 𝐡)) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βˆͺ 𝐡) βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ (𝐴 βˆͺ 𝐡)(𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
168, 9, 10, 11, 12elocv 21212 . . . . . 6 (𝑧 ∈ ( βŠ₯ β€˜π΄) ↔ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))
17 3anan12 1096 . . . . . 6 ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
1816, 17bitri 274 . . . . 5 (𝑧 ∈ ( βŠ₯ β€˜π΄) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
198, 9, 10, 11, 12elocv 21212 . . . . . 6 (𝑧 ∈ ( βŠ₯ β€˜π΅) ↔ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))
20 3anan12 1096 . . . . . 6 ((𝐡 βŠ† (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
2119, 20bitri 274 . . . . 5 (𝑧 ∈ ( βŠ₯ β€˜π΅) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))))
2218, 21anbi12i 627 . . . 4 ((𝑧 ∈ ( βŠ₯ β€˜π΄) ∧ 𝑧 ∈ ( βŠ₯ β€˜π΅)) ↔ ((𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))) ∧ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))))
23 elin 3963 . . . 4 (𝑧 ∈ (( βŠ₯ β€˜π΄) ∩ ( βŠ₯ β€˜π΅)) ↔ (𝑧 ∈ ( βŠ₯ β€˜π΄) ∧ 𝑧 ∈ ( βŠ₯ β€˜π΅)))
24 anandi 674 . . . 4 ((𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))) ↔ ((𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))) ∧ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))))
2522, 23, 243bitr4i 302 . . 3 (𝑧 ∈ (( βŠ₯ β€˜π΄) ∩ ( βŠ₯ β€˜π΅)) ↔ (𝑧 ∈ (Baseβ€˜π‘Š) ∧ ((𝐴 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐴 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))) ∧ (𝐡 βŠ† (Baseβ€˜π‘Š) ∧ βˆ€π‘¦ ∈ 𝐡 (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š))))))
267, 15, 253bitr4i 302 . 2 (𝑧 ∈ ( βŠ₯ β€˜(𝐴 βˆͺ 𝐡)) ↔ 𝑧 ∈ (( βŠ₯ β€˜π΄) ∩ ( βŠ₯ β€˜π΅)))
2726eqriv 2729 1 ( βŠ₯ β€˜(𝐴 βˆͺ 𝐡)) = (( βŠ₯ β€˜π΄) ∩ ( βŠ₯ β€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196  Β·π‘–cip 17198  0gc0g 17381  ocvcocv 21204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-ocv 21207
This theorem is referenced by:  cssincl  21232
  Copyright terms: Public domain W3C validator