MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 20866
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o = (ocv‘𝑊)
Assertion
Ref Expression
unocv ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4122 . . . . . . 7 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴𝐵) ⊆ (Base‘𝑊))
21bicomi 223 . . . . . 6 ((𝐴𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)))
3 ralunb 4129 . . . . . 6 (∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
42, 3anbi12i 626 . . . . 5 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 an4 652 . . . . 5 (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
64, 5bitri 274 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
76anbi2i 622 . . 3 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
8 eqid 2739 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2739 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
10 eqid 2739 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2739 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 inocv.o . . . . 5 = (ocv‘𝑊)
138, 9, 10, 11, 12elocv 20854 . . . 4 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 3anan12 1094 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1513, 14bitri 274 . . 3 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
168, 9, 10, 11, 12elocv 20854 . . . . . 6 (𝑧 ∈ ( 𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
17 3anan12 1094 . . . . . 6 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1816, 17bitri 274 . . . . 5 (𝑧 ∈ ( 𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
198, 9, 10, 11, 12elocv 20854 . . . . . 6 (𝑧 ∈ ( 𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
20 3anan12 1094 . . . . . 6 ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2119, 20bitri 274 . . . . 5 (𝑧 ∈ ( 𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2218, 21anbi12i 626 . . . 4 ((𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
23 elin 3907 . . . 4 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)))
24 anandi 672 . . . 4 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
2522, 23, 243bitr4i 302 . . 3 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
267, 15, 253bitr4i 302 . 2 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ 𝑧 ∈ (( 𝐴) ∩ ( 𝐵)))
2726eqriv 2736 1 ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  cun 3889  cin 3890  wss 3891  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946  ·𝑖cip 16948  0gc0g 17131  ocvcocv 20846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-ocv 20849
This theorem is referenced by:  cssincl  20874
  Copyright terms: Public domain W3C validator