MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 21640
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o = (ocv‘𝑊)
Assertion
Ref Expression
unocv ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4165 . . . . . . 7 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴𝐵) ⊆ (Base‘𝑊))
21bicomi 224 . . . . . 6 ((𝐴𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)))
3 ralunb 4172 . . . . . 6 (∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
42, 3anbi12i 628 . . . . 5 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 an4 656 . . . . 5 (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
64, 5bitri 275 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
76anbi2i 623 . . 3 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
8 eqid 2735 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2735 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
10 eqid 2735 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2735 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 inocv.o . . . . 5 = (ocv‘𝑊)
138, 9, 10, 11, 12elocv 21628 . . . 4 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 3anan12 1095 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1513, 14bitri 275 . . 3 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
168, 9, 10, 11, 12elocv 21628 . . . . . 6 (𝑧 ∈ ( 𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
17 3anan12 1095 . . . . . 6 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1816, 17bitri 275 . . . . 5 (𝑧 ∈ ( 𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
198, 9, 10, 11, 12elocv 21628 . . . . . 6 (𝑧 ∈ ( 𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
20 3anan12 1095 . . . . . 6 ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2119, 20bitri 275 . . . . 5 (𝑧 ∈ ( 𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2218, 21anbi12i 628 . . . 4 ((𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
23 elin 3942 . . . 4 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)))
24 anandi 676 . . . 4 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
2522, 23, 243bitr4i 303 . . 3 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
267, 15, 253bitr4i 303 . 2 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ 𝑧 ∈ (( 𝐴) ∩ ( 𝐵)))
2726eqriv 2732 1 ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cun 3924  cin 3925  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274  ·𝑖cip 17276  0gc0g 17453  ocvcocv 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-ocv 21623
This theorem is referenced by:  cssincl  21648
  Copyright terms: Public domain W3C validator