MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 20314
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o = (ocv‘𝑊)
Assertion
Ref Expression
unocv ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3951 . . . . . . 7 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴𝐵) ⊆ (Base‘𝑊))
21bicomi 215 . . . . . 6 ((𝐴𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)))
3 ralunb 3958 . . . . . 6 (∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
42, 3anbi12i 620 . . . . 5 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 an4 646 . . . . 5 (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
64, 5bitri 266 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
76anbi2i 616 . . 3 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
8 eqid 2765 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2765 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
10 eqid 2765 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2765 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 inocv.o . . . . 5 = (ocv‘𝑊)
138, 9, 10, 11, 12elocv 20302 . . . 4 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 3anan12 1117 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1513, 14bitri 266 . . 3 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
168, 9, 10, 11, 12elocv 20302 . . . . . 6 (𝑧 ∈ ( 𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
17 3anan12 1117 . . . . . 6 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1816, 17bitri 266 . . . . 5 (𝑧 ∈ ( 𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
198, 9, 10, 11, 12elocv 20302 . . . . . 6 (𝑧 ∈ ( 𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
20 3anan12 1117 . . . . . 6 ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2119, 20bitri 266 . . . . 5 (𝑧 ∈ ( 𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2218, 21anbi12i 620 . . . 4 ((𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
23 elin 3960 . . . 4 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)))
24 anandi 666 . . . 4 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
2522, 23, 243bitr4i 294 . . 3 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
267, 15, 253bitr4i 294 . 2 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ 𝑧 ∈ (( 𝐴) ∩ ( 𝐵)))
2726eqriv 2762 1 ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  cun 3732  cin 3733  wss 3734  cfv 6070  (class class class)co 6846  Basecbs 16144  Scalarcsca 16231  ·𝑖cip 16233  0gc0g 16380  ocvcocv 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-fv 6078  df-ov 6849  df-ocv 20297
This theorem is referenced by:  cssincl  20322
  Copyright terms: Public domain W3C validator