| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | unss 4190 | . . . . . . 7
⊢ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴 ∪ 𝐵) ⊆ (Base‘𝑊)) | 
| 2 | 1 | bicomi 224 | . . . . . 6
⊢ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊))) | 
| 3 |  | ralunb 4197 | . . . . . 6
⊢
(∀𝑦 ∈
(𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 4 | 2, 3 | anbi12i 628 | . . . . 5
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 5 |  | an4 656 | . . . . 5
⊢ (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 6 | 4, 5 | bitri 275 | . . . 4
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 7 | 6 | anbi2i 623 | . . 3
⊢ ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) | 
| 8 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 9 |  | eqid 2737 | . . . . 5
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) | 
| 10 |  | eqid 2737 | . . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 11 |  | eqid 2737 | . . . . 5
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) | 
| 12 |  | inocv.o | . . . . 5
⊢  ⊥ =
(ocv‘𝑊) | 
| 13 | 8, 9, 10, 11, 12 | elocv 21686 | . . . 4
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 14 |  | 3anan12 1096 | . . . 4
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 15 | 13, 14 | bitri 275 | . . 3
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 16 | 8, 9, 10, 11, 12 | elocv 21686 | . . . . . 6
⊢ (𝑧 ∈ ( ⊥ ‘𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 17 |  | 3anan12 1096 | . . . . . 6
⊢ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 18 | 16, 17 | bitri 275 | . . . . 5
⊢ (𝑧 ∈ ( ⊥ ‘𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 19 | 8, 9, 10, 11, 12 | elocv 21686 | . . . . . 6
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | 
| 20 |  | 3anan12 1096 | . . . . . 6
⊢ ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 21 | 19, 20 | bitri 275 | . . . . 5
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) | 
| 22 | 18, 21 | anbi12i 628 | . . . 4
⊢ ((𝑧 ∈ ( ⊥ ‘𝐴) ∧ 𝑧 ∈ ( ⊥ ‘𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) | 
| 23 |  | elin 3967 | . . . 4
⊢ (𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ ( ⊥ ‘𝐴) ∧ 𝑧 ∈ ( ⊥ ‘𝐵))) | 
| 24 |  | anandi 676 | . . . 4
⊢ ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) | 
| 25 | 22, 23, 24 | 3bitr4i 303 | . . 3
⊢ (𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) | 
| 26 | 7, 15, 25 | 3bitr4i 303 | . 2
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ 𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵))) | 
| 27 | 26 | eqriv 2734 | 1
⊢ ( ⊥
‘(𝐴 ∪ 𝐵)) = (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) |