Step | Hyp | Ref
| Expression |
1 | | unss 4122 |
. . . . . . 7
⊢ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴 ∪ 𝐵) ⊆ (Base‘𝑊)) |
2 | 1 | bicomi 223 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊))) |
3 | | ralunb 4129 |
. . . . . 6
⊢
(∀𝑦 ∈
(𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
4 | 2, 3 | anbi12i 626 |
. . . . 5
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
5 | | an4 652 |
. . . . 5
⊢ (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
6 | 4, 5 | bitri 274 |
. . . 4
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
7 | 6 | anbi2i 622 |
. . 3
⊢ ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) |
8 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
9 | | eqid 2739 |
. . . . 5
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
10 | | eqid 2739 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
11 | | eqid 2739 |
. . . . 5
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
12 | | inocv.o |
. . . . 5
⊢ ⊥ =
(ocv‘𝑊) |
13 | 8, 9, 10, 11, 12 | elocv 20854 |
. . . 4
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
14 | | 3anan12 1094 |
. . . 4
⊢ (((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
15 | 13, 14 | bitri 274 |
. . 3
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ∪ 𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴 ∪ 𝐵)(𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
16 | 8, 9, 10, 11, 12 | elocv 20854 |
. . . . . 6
⊢ (𝑧 ∈ ( ⊥ ‘𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
17 | | 3anan12 1094 |
. . . . . 6
⊢ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
18 | 16, 17 | bitri 274 |
. . . . 5
⊢ (𝑧 ∈ ( ⊥ ‘𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
19 | 8, 9, 10, 11, 12 | elocv 20854 |
. . . . . 6
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
20 | | 3anan12 1094 |
. . . . . 6
⊢ ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
21 | 19, 20 | bitri 274 |
. . . . 5
⊢ (𝑧 ∈ ( ⊥ ‘𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
22 | 18, 21 | anbi12i 626 |
. . . 4
⊢ ((𝑧 ∈ ( ⊥ ‘𝐴) ∧ 𝑧 ∈ ( ⊥ ‘𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) |
23 | | elin 3907 |
. . . 4
⊢ (𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ ( ⊥ ‘𝐴) ∧ 𝑧 ∈ ( ⊥ ‘𝐵))) |
24 | | anandi 672 |
. . . 4
⊢ ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) |
25 | 22, 23, 24 | 3bitr4i 302 |
. . 3
⊢ (𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐴 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝐵 (𝑧(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))) |
26 | 7, 15, 25 | 3bitr4i 302 |
. 2
⊢ (𝑧 ∈ ( ⊥ ‘(𝐴 ∪ 𝐵)) ↔ 𝑧 ∈ (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵))) |
27 | 26 | eqriv 2736 |
1
⊢ ( ⊥
‘(𝐴 ∪ 𝐵)) = (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) |