MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Visualization version   GIF version

Theorem unocv 20797
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o = (ocv‘𝑊)
Assertion
Ref Expression
unocv ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))

Proof of Theorem unocv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4114 . . . . . . 7 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ↔ (𝐴𝐵) ⊆ (Base‘𝑊))
21bicomi 223 . . . . . 6 ((𝐴𝐵) ⊆ (Base‘𝑊) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)))
3 ralunb 4121 . . . . . 6 (∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
42, 3anbi12i 626 . . . . 5 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 an4 652 . . . . 5 (((𝐴 ⊆ (Base‘𝑊) ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ (∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
64, 5bitri 274 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
76anbi2i 622 . . 3 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
8 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
9 eqid 2738 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
10 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2738 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 inocv.o . . . . 5 = (ocv‘𝑊)
138, 9, 10, 11, 12elocv 20785 . . . 4 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
14 3anan12 1094 . . . 4 (((𝐴𝐵) ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1513, 14bitri 274 . . 3 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴𝐵) ⊆ (Base‘𝑊) ∧ ∀𝑦 ∈ (𝐴𝐵)(𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
168, 9, 10, 11, 12elocv 20785 . . . . . 6 (𝑧 ∈ ( 𝐴) ↔ (𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
17 3anan12 1094 . . . . . 6 ((𝐴 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
1816, 17bitri 274 . . . . 5 (𝑧 ∈ ( 𝐴) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
198, 9, 10, 11, 12elocv 20785 . . . . . 6 (𝑧 ∈ ( 𝐵) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
20 3anan12 1094 . . . . . 6 ((𝐵 ⊆ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2119, 20bitri 274 . . . . 5 (𝑧 ∈ ( 𝐵) ↔ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
2218, 21anbi12i 626 . . . 4 ((𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
23 elin 3899 . . . 4 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ ( 𝐴) ∧ 𝑧 ∈ ( 𝐵)))
24 anandi 672 . . . 4 ((𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ (𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
2522, 23, 243bitr4i 302 . . 3 (𝑧 ∈ (( 𝐴) ∩ ( 𝐵)) ↔ (𝑧 ∈ (Base‘𝑊) ∧ ((𝐴 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐴 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) ∧ (𝐵 ⊆ (Base‘𝑊) ∧ ∀𝑦𝐵 (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))))
267, 15, 253bitr4i 302 . 2 (𝑧 ∈ ( ‘(𝐴𝐵)) ↔ 𝑧 ∈ (( 𝐴) ∩ ( 𝐵)))
2726eqriv 2735 1 ( ‘(𝐴𝐵)) = (( 𝐴) ∩ ( 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cun 3881  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  ocvcocv 20777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-ocv 20780
This theorem is referenced by:  cssincl  20805
  Copyright terms: Public domain W3C validator