Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Visualization version   GIF version

Theorem pridlnr 38020
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1 𝐺 = (1st𝑅)
prdilnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlnr ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)

Proof of Theorem pridlnr
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
3 prdilnr.2 . . . 4 𝑋 = ran 𝐺
41, 2, 3ispridl 38018 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 3anan12 1095 . . 3 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
64, 5bitrdi 287 . 2 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
76simprbda 498 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903  ran crn 5620  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  RingOpscrngo 37878  Idlcidl 37991  PrIdlcpridl 37992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-pridl 37995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator