Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Visualization version   GIF version

Theorem pridlnr 36899
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1 𝐺 = (1st β€˜π‘…)
prdilnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlnr ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) β†’ 𝑃 β‰  𝑋)

Proof of Theorem pridlnr
Dummy variables π‘₯ 𝑦 π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4 𝐺 = (1st β€˜π‘…)
2 eqid 2732 . . . 4 (2nd β€˜π‘…) = (2nd β€˜π‘…)
3 prdilnr.2 . . . 4 𝑋 = ran 𝐺
41, 2, 3ispridl 36897 . . 3 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (PrIdlβ€˜π‘…) ↔ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃)))))
5 3anan12 1096 . . 3 ((𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃))) ↔ (𝑃 β‰  𝑋 ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃)))))
64, 5bitrdi 286 . 2 (𝑅 ∈ RingOps β†’ (𝑃 ∈ (PrIdlβ€˜π‘…) ↔ (𝑃 β‰  𝑋 ∧ (𝑃 ∈ (Idlβ€˜π‘…) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘…)βˆ€π‘ ∈ (Idlβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘…)𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃))))))
76simprbda 499 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) β†’ 𝑃 β‰  𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βŠ† wss 3948  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  RingOpscrngo 36757  Idlcidl 36870  PrIdlcpridl 36871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-pridl 36874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator