Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Visualization version   GIF version

Theorem pridlnr 38030
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1 𝐺 = (1st𝑅)
prdilnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlnr ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)

Proof of Theorem pridlnr
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
3 prdilnr.2 . . . 4 𝑋 = ran 𝐺
41, 2, 3ispridl 38028 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 3anan12 1095 . . 3 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
64, 5bitrdi 287 . 2 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
76simprbda 498 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  RingOpscrngo 37888  Idlcidl 38001  PrIdlcpridl 38002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-pridl 38005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator