Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlnr Structured version   Visualization version   GIF version

Theorem pridlnr 38086
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
pridlnr.1 𝐺 = (1st𝑅)
prdilnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlnr ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)

Proof of Theorem pridlnr
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pridlnr.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2731 . . . 4 (2nd𝑅) = (2nd𝑅)
3 prdilnr.2 . . . 4 𝑋 = ran 𝐺
41, 2, 3ispridl 38084 . . 3 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
5 3anan12 1095 . . 3 ((𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
64, 5bitrdi 287 . 2 (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃𝑋 ∧ (𝑃 ∈ (Idl‘𝑅) ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑅)𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
76simprbda 498 1 ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  ran crn 5615  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  RingOpscrngo 37944  Idlcidl 38057  PrIdlcpridl 38058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-pridl 38061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator