MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshf1 Structured version   Visualization version   GIF version

Theorem cshf1 14858
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshf1 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)

Proof of Theorem cshf1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6817 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹:(0..^(♯‘𝐹))⟶𝐴)
2 iswrdi 14566 . . . . 5 (𝐹:(0..^(♯‘𝐹))⟶𝐴𝐹 ∈ Word 𝐴)
31, 2syl 17 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴)
4 cshwf 14848 . . . . . . . . 9 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
543adant1 1130 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
65adantr 480 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
7 feq1 6728 . . . . . . . 8 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴))
87adantl 481 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴))
96, 8mpbird 257 . . . . . 6 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))⟶𝐴)
10 dff13 7292 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11 fveq1 6919 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
12113ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
1312adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
14 cshwidxmod 14851 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
15143expia 1121 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
16153adant1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1716com12 32 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1817adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1918impcom 407 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
2013, 19eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
21 fveq1 6919 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
22213ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
2322adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
24 cshwidxmod 14851 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
25243expia 1121 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
26253adant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
2726adantld 490 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
2827imp 406 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
2923, 28eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
3020, 29eqeq12d 2756 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
3130adantlr 714 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
32 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑖 < (♯‘𝐹)))
33 nn0z 12664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → 𝑖 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑖 ∈ ℤ)
36 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
3735, 36zaddcld 12751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (𝑖 + 𝑆) ∈ ℤ)
38 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (♯‘𝐹) ∈ ℕ)
4037, 39jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
4140ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℤ → ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
42413ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
44433adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑖 < (♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4532, 44sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4645adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4746impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
48 zmodfzo 13945 . . . . . . . . . . . . . . . . . 18 (((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
50 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0..^(♯‘𝐹)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑗 < (♯‘𝐹)))
51 nn0z 12664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → 𝑗 ∈ ℤ)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑗 ∈ ℤ)
54 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
5553, 54zaddcld 12751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (𝑗 + 𝑆) ∈ ℤ)
56 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℕ)
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (♯‘𝐹) ∈ ℕ)
5855, 57jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
5958expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
60593adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑗 < (♯‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6150, 60sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^(♯‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6261com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
63623ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6463adantld 490 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6564imp 406 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
66 zmodfzo 13945 . . . . . . . . . . . . . . . . . 18 (((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ) → ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
68 fveqeq2 6929 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦)))
69 eqeq1 2744 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → (𝑥 = 𝑦 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦))
7068, 69imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦)))
71 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
7271eqeq2d 2751 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
73 eqeq2 2752 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
7472, 73imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
7570, 74rspc2v 3646 . . . . . . . . . . . . . . . . 17 ((((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ∧ ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
7649, 67, 75syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
77 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
78 addmodlteq 13997 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
79783expa 1118 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
8079ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
8180bicomd 223 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
82813ad2antl3 1187 . . . . . . . . . . . . . . . . . . 19 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
8382adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
8477, 83sylibrd 259 . . . . . . . . . . . . . . . . 17 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗))
8584ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8676, 85syld 47 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8786impancom 451 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8887imp 406 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗))
8931, 88sylbid 240 . . . . . . . . . . . 12 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
9089ralrimivva 3208 . . . . . . . . . . 11 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
91903exp1 1352 . . . . . . . . . 10 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9291com14 96 . . . . . . . . 9 (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9392adantl 481 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9410, 93sylbi 217 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
95943imp1 1347 . . . . . 6 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
969, 95jca 511 . . . . 5 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
97963exp1 1352 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))))))
983, 97mpd 15 . . 3 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
99983imp 1111 . 2 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
100 dff13 7292 . 2 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
10199, 100sylibr 234 1 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  0cc0 11184   + caddc 11187   < clt 11324  cn 12293  0cn0 12553  cz 12639  ..^cfzo 13711   mod cmo 13920  chash 14379  Word cword 14562   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  cshinj  14859  cshf1o  32929
  Copyright terms: Public domain W3C validator