MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funelss Structured version   Visualization version   GIF version

Theorem funelss 7979
Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funelss ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))

Proof of Theorem funelss
StepHypRef Expression
1 funrel 6498 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
2 1st2nd 7971 . . . . . 6 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . . . . 5 ((Fun 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 simpl1l 1225 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → Fun 𝐴)
5 simpl3 1194 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝐵𝐴)
6 simpr 484 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (1st𝑋) ∈ dom 𝐵)
7 funssfv 6843 . . . . . . . . . 10 ((Fun 𝐴𝐵𝐴 ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
84, 5, 6, 7syl3anc 1373 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
9 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
109adantl 481 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
11 funopfv 6871 . . . . . . . . . . . . . . 15 (Fun 𝐴 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1211adantr 480 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1310, 12sylbid 240 . . . . . . . . . . . . 13 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1413impancom 451 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1514imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝐴‘(1st𝑋)) = (2nd𝑋))
16153adant3 1132 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝐴‘(1st𝑋)) = (2nd𝑋))
1716adantr 480 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (2nd𝑋))
188, 17eqtr3d 2768 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐵‘(1st𝑋)) = (2nd𝑋))
19 funss 6500 . . . . . . . . . . . . . 14 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
2019com12 32 . . . . . . . . . . . . 13 (Fun 𝐴 → (𝐵𝐴 → Fun 𝐵))
2120adantr 480 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → Fun 𝐵))
2221imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → Fun 𝐵)
2322funfnd 6512 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
24233adant2 1131 . . . . . . . . 9 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
25 fnopfvb 6873 . . . . . . . . 9 ((𝐵 Fn dom 𝐵 ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2624, 25sylan 580 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2718, 26mpbid 232 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵)
28 eleq1 2819 . . . . . . . . 9 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
29283ad2ant2 1134 . . . . . . . 8 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3029adantr 480 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3127, 30mpbird 257 . . . . . 6 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝑋𝐵)
32313exp1 1353 . . . . 5 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
333, 32mpd 15 . . . 4 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵)))
3433ex 412 . . 3 (Fun 𝐴 → (𝑋𝐴 → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
3534com23 86 . 2 (Fun 𝐴 → (𝐵𝐴 → (𝑋𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
36353imp 1110 1 ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  cop 4582  dom cdm 5616  Rel wrel 5621  Fun wfun 6475   Fn wfn 6476  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  funeldmdif  7980
  Copyright terms: Public domain W3C validator