Proof of Theorem funelss
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | funrel 6583 | . . . . . 6
⊢ (Fun
𝐴 → Rel 𝐴) | 
| 2 |  | 1st2nd 8064 | . . . . . 6
⊢ ((Rel
𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | 
| 3 | 1, 2 | sylan 580 | . . . . 5
⊢ ((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | 
| 4 |  | simpl1l 1225 | . . . . . . . . . 10
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → Fun 𝐴) | 
| 5 |  | simpl3 1194 | . . . . . . . . . 10
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → 𝐵 ⊆ 𝐴) | 
| 6 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → (1st ‘𝑋) ∈ dom 𝐵) | 
| 7 |  | funssfv 6927 | . . . . . . . . . 10
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ (1st ‘𝑋) ∈ dom 𝐵) → (𝐴‘(1st ‘𝑋)) = (𝐵‘(1st ‘𝑋))) | 
| 8 | 4, 5, 6, 7 | syl3anc 1373 | . . . . . . . . 9
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → (𝐴‘(1st ‘𝑋)) = (𝐵‘(1st ‘𝑋))) | 
| 9 |  | eleq1 2829 | . . . . . . . . . . . . . . 15
⊢ (𝑋 = 〈(1st
‘𝑋), (2nd
‘𝑋)〉 →
(𝑋 ∈ 𝐴 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴)) | 
| 10 | 9 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((Fun
𝐴 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐴 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴)) | 
| 11 |  | funopfv 6958 | . . . . . . . . . . . . . . 15
⊢ (Fun
𝐴 →
(〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴 → (𝐴‘(1st ‘𝑋)) = (2nd
‘𝑋))) | 
| 12 | 11 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((Fun
𝐴 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) →
(〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐴 → (𝐴‘(1st ‘𝑋)) = (2nd
‘𝑋))) | 
| 13 | 10, 12 | sylbid 240 | . . . . . . . . . . . . 13
⊢ ((Fun
𝐴 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐴 → (𝐴‘(1st ‘𝑋)) = (2nd
‘𝑋))) | 
| 14 | 13 | impancom 451 | . . . . . . . . . . . 12
⊢ ((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐴‘(1st
‘𝑋)) =
(2nd ‘𝑋))) | 
| 15 | 14 | imp 406 | . . . . . . . . . . 11
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝐴‘(1st
‘𝑋)) =
(2nd ‘𝑋)) | 
| 16 | 15 | 3adant3 1133 | . . . . . . . . . 10
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) → (𝐴‘(1st ‘𝑋)) = (2nd
‘𝑋)) | 
| 17 | 16 | adantr 480 | . . . . . . . . 9
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → (𝐴‘(1st ‘𝑋)) = (2nd
‘𝑋)) | 
| 18 | 8, 17 | eqtr3d 2779 | . . . . . . . 8
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → (𝐵‘(1st ‘𝑋)) = (2nd
‘𝑋)) | 
| 19 |  | funss 6585 | . . . . . . . . . . . . . 14
⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | 
| 20 | 19 | com12 32 | . . . . . . . . . . . . 13
⊢ (Fun
𝐴 → (𝐵 ⊆ 𝐴 → Fun 𝐵)) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . . 12
⊢ ((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐵 ⊆ 𝐴 → Fun 𝐵)) | 
| 22 | 21 | imp 406 | . . . . . . . . . . 11
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝐵 ⊆ 𝐴) → Fun 𝐵) | 
| 23 | 22 | funfnd 6597 | . . . . . . . . . 10
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝐵 ⊆ 𝐴) → 𝐵 Fn dom 𝐵) | 
| 24 | 23 | 3adant2 1132 | . . . . . . . . 9
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 Fn dom 𝐵) | 
| 25 |  | fnopfvb 6960 | . . . . . . . . 9
⊢ ((𝐵 Fn dom 𝐵 ∧ (1st ‘𝑋) ∈ dom 𝐵) → ((𝐵‘(1st ‘𝑋)) = (2nd
‘𝑋) ↔
〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵)) | 
| 26 | 24, 25 | sylan 580 | . . . . . . . 8
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → ((𝐵‘(1st ‘𝑋)) = (2nd
‘𝑋) ↔
〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵)) | 
| 27 | 18, 26 | mpbid 232 | . . . . . . 7
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵) | 
| 28 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑋 = 〈(1st
‘𝑋), (2nd
‘𝑋)〉 →
(𝑋 ∈ 𝐵 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵)) | 
| 29 | 28 | 3ad2ant2 1135 | . . . . . . . 8
⊢ (((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ 𝐵 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵)) | 
| 30 | 29 | adantr 480 | . . . . . . 7
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → (𝑋 ∈ 𝐵 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐵)) | 
| 31 | 27, 30 | mpbird 257 | . . . . . 6
⊢ ((((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ 𝐵 ⊆ 𝐴) ∧ (1st ‘𝑋) ∈ dom 𝐵) → 𝑋 ∈ 𝐵) | 
| 32 | 31 | 3exp1 1353 | . . . . 5
⊢ ((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐵 ⊆ 𝐴 → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)))) | 
| 33 | 3, 32 | mpd 15 | . . . 4
⊢ ((Fun
𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐵 ⊆ 𝐴 → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵))) | 
| 34 | 33 | ex 412 | . . 3
⊢ (Fun
𝐴 → (𝑋 ∈ 𝐴 → (𝐵 ⊆ 𝐴 → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)))) | 
| 35 | 34 | com23 86 | . 2
⊢ (Fun
𝐴 → (𝐵 ⊆ 𝐴 → (𝑋 ∈ 𝐴 → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)))) | 
| 36 | 35 | 3imp 1111 | 1
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐴) → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)) |