MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funelss Structured version   Visualization version   GIF version

Theorem funelss 8046
Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funelss ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))

Proof of Theorem funelss
StepHypRef Expression
1 funrel 6553 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
2 1st2nd 8038 . . . . . 6 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . . . . 5 ((Fun 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 simpl1l 1225 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → Fun 𝐴)
5 simpl3 1194 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝐵𝐴)
6 simpr 484 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (1st𝑋) ∈ dom 𝐵)
7 funssfv 6897 . . . . . . . . . 10 ((Fun 𝐴𝐵𝐴 ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
84, 5, 6, 7syl3anc 1373 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
9 eleq1 2822 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
109adantl 481 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
11 funopfv 6928 . . . . . . . . . . . . . . 15 (Fun 𝐴 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1211adantr 480 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1310, 12sylbid 240 . . . . . . . . . . . . 13 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1413impancom 451 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1514imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝐴‘(1st𝑋)) = (2nd𝑋))
16153adant3 1132 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝐴‘(1st𝑋)) = (2nd𝑋))
1716adantr 480 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (2nd𝑋))
188, 17eqtr3d 2772 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐵‘(1st𝑋)) = (2nd𝑋))
19 funss 6555 . . . . . . . . . . . . . 14 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
2019com12 32 . . . . . . . . . . . . 13 (Fun 𝐴 → (𝐵𝐴 → Fun 𝐵))
2120adantr 480 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → Fun 𝐵))
2221imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → Fun 𝐵)
2322funfnd 6567 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
24233adant2 1131 . . . . . . . . 9 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
25 fnopfvb 6930 . . . . . . . . 9 ((𝐵 Fn dom 𝐵 ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2624, 25sylan 580 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2718, 26mpbid 232 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵)
28 eleq1 2822 . . . . . . . . 9 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
29283ad2ant2 1134 . . . . . . . 8 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3029adantr 480 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3127, 30mpbird 257 . . . . . 6 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝑋𝐵)
32313exp1 1353 . . . . 5 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
333, 32mpd 15 . . . 4 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵)))
3433ex 412 . . 3 (Fun 𝐴 → (𝑋𝐴 → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
3534com23 86 . 2 (Fun 𝐴 → (𝐵𝐴 → (𝑋𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
36353imp 1110 1 ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  cop 4607  dom cdm 5654  Rel wrel 5659  Fun wfun 6525   Fn wfn 6526  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-1st 7988  df-2nd 7989
This theorem is referenced by:  funeldmdif  8047
  Copyright terms: Public domain W3C validator