MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funelss Structured version   Visualization version   GIF version

Theorem funelss 7746
Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funelss ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))

Proof of Theorem funelss
StepHypRef Expression
1 funrel 6372 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
2 1st2nd 7738 . . . . . 6 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 582 . . . . 5 ((Fun 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 simpl1l 1220 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → Fun 𝐴)
5 simpl3 1189 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝐵𝐴)
6 simpr 487 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (1st𝑋) ∈ dom 𝐵)
7 funssfv 6691 . . . . . . . . . 10 ((Fun 𝐴𝐵𝐴 ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
84, 5, 6, 7syl3anc 1367 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
9 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
109adantl 484 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
11 funopfv 6717 . . . . . . . . . . . . . . 15 (Fun 𝐴 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1211adantr 483 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1310, 12sylbid 242 . . . . . . . . . . . . 13 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1413impancom 454 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1514imp 409 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝐴‘(1st𝑋)) = (2nd𝑋))
16153adant3 1128 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝐴‘(1st𝑋)) = (2nd𝑋))
1716adantr 483 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (2nd𝑋))
188, 17eqtr3d 2858 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐵‘(1st𝑋)) = (2nd𝑋))
19 funss 6374 . . . . . . . . . . . . . 14 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
2019com12 32 . . . . . . . . . . . . 13 (Fun 𝐴 → (𝐵𝐴 → Fun 𝐵))
2120adantr 483 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → Fun 𝐵))
2221imp 409 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → Fun 𝐵)
2322funfnd 6386 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
24233adant2 1127 . . . . . . . . 9 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
25 fnopfvb 6719 . . . . . . . . 9 ((𝐵 Fn dom 𝐵 ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2624, 25sylan 582 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2718, 26mpbid 234 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵)
28 eleq1 2900 . . . . . . . . 9 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
29283ad2ant2 1130 . . . . . . . 8 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3029adantr 483 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3127, 30mpbird 259 . . . . . 6 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝑋𝐵)
32313exp1 1348 . . . . 5 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
333, 32mpd 15 . . . 4 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵)))
3433ex 415 . . 3 (Fun 𝐴 → (𝑋𝐴 → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
3534com23 86 . 2 (Fun 𝐴 → (𝐵𝐴 → (𝑋𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
36353imp 1107 1 ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  cop 4573  dom cdm 5555  Rel wrel 5560  Fun wfun 6349   Fn wfn 6350  cfv 6355  1st c1st 7687  2nd c2nd 7688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-1st 7689  df-2nd 7690
This theorem is referenced by:  funeldmdif  7747
  Copyright terms: Public domain W3C validator