MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funelss Structured version   Visualization version   GIF version

Theorem funelss 7989
Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funelss ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))

Proof of Theorem funelss
StepHypRef Expression
1 funrel 6503 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
2 1st2nd 7981 . . . . . 6 ((Rel 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . . . . 5 ((Fun 𝐴𝑋𝐴) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 simpl1l 1225 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → Fun 𝐴)
5 simpl3 1194 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝐵𝐴)
6 simpr 484 . . . . . . . . . 10 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (1st𝑋) ∈ dom 𝐵)
7 funssfv 6847 . . . . . . . . . 10 ((Fun 𝐴𝐵𝐴 ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
84, 5, 6, 7syl3anc 1373 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (𝐵‘(1st𝑋)))
9 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
109adantl 481 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴))
11 funopfv 6876 . . . . . . . . . . . . . . 15 (Fun 𝐴 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1211adantr 480 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1310, 12sylbid 240 . . . . . . . . . . . . 13 ((Fun 𝐴𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐴 → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1413impancom 451 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐴‘(1st𝑋)) = (2nd𝑋)))
1514imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝐴‘(1st𝑋)) = (2nd𝑋))
16153adant3 1132 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝐴‘(1st𝑋)) = (2nd𝑋))
1716adantr 480 . . . . . . . . 9 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐴‘(1st𝑋)) = (2nd𝑋))
188, 17eqtr3d 2766 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝐵‘(1st𝑋)) = (2nd𝑋))
19 funss 6505 . . . . . . . . . . . . . 14 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
2019com12 32 . . . . . . . . . . . . 13 (Fun 𝐴 → (𝐵𝐴 → Fun 𝐵))
2120adantr 480 . . . . . . . . . . . 12 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → Fun 𝐵))
2221imp 406 . . . . . . . . . . 11 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → Fun 𝐵)
2322funfnd 6517 . . . . . . . . . 10 (((Fun 𝐴𝑋𝐴) ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
24233adant2 1131 . . . . . . . . 9 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → 𝐵 Fn dom 𝐵)
25 fnopfvb 6878 . . . . . . . . 9 ((𝐵 Fn dom 𝐵 ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2624, 25sylan 580 . . . . . . . 8 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ((𝐵‘(1st𝑋)) = (2nd𝑋) ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
2718, 26mpbid 232 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵)
28 eleq1 2816 . . . . . . . . 9 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
29283ad2ant2 1134 . . . . . . . 8 (((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3029adantr 480 . . . . . . 7 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → (𝑋𝐵 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐵))
3127, 30mpbird 257 . . . . . 6 ((((Fun 𝐴𝑋𝐴) ∧ 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ 𝐵𝐴) ∧ (1st𝑋) ∈ dom 𝐵) → 𝑋𝐵)
32313exp1 1353 . . . . 5 ((Fun 𝐴𝑋𝐴) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
333, 32mpd 15 . . . 4 ((Fun 𝐴𝑋𝐴) → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵)))
3433ex 412 . . 3 (Fun 𝐴 → (𝑋𝐴 → (𝐵𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
3534com23 86 . 2 (Fun 𝐴 → (𝐵𝐴 → (𝑋𝐴 → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))))
36353imp 1110 1 ((Fun 𝐴𝐵𝐴𝑋𝐴) → ((1st𝑋) ∈ dom 𝐵𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cop 4585  dom cdm 5623  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481  cfv 6486  1st c1st 7929  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-1st 7931  df-2nd 7932
This theorem is referenced by:  funeldmdif  7990
  Copyright terms: Public domain W3C validator