MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foa Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foa 30220
Description: Going forth and back from the end of a (closed) walk: π‘Š represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and π‘Œ = p(n-1), ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
Assertion
Ref Expression
numclwwlk1lem2foa ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑀,π‘Š   𝑀,π‘Œ
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)   π‘Š(𝑣,𝑛)   π‘Œ(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2foa
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ 𝑋 ∈ 𝑉)
2 extwwlkfab.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
32nbgrisvtx 29210 . . . . 5 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ π‘Œ ∈ 𝑉)
43ad2antll 727 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Œ ∈ 𝑉)
5 simpl3 1190 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
6 nbgrsym 29232 . . . . . . . 8 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx π‘Œ))
7 eqid 2725 . . . . . . . . . 10 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
87nbusgreledg 29222 . . . . . . . . 9 (𝐺 ∈ USGraph β†’ (𝑋 ∈ (𝐺 NeighbVtx π‘Œ) ↔ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
98biimpd 228 . . . . . . . 8 (𝐺 ∈ USGraph β†’ (𝑋 ∈ (𝐺 NeighbVtx π‘Œ) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
106, 9biimtrid 241 . . . . . . 7 (𝐺 ∈ USGraph β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
1110adantld 489 . . . . . 6 (𝐺 ∈ USGraph β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
12113ad2ant1 1130 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
1312imp 405 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ))
14 simprl 769 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Š ∈ 𝐹)
15 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
1614, 15eleqtrdi 2835 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
172, 7clwwlknonex2 29975 . . . 4 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))
181, 4, 5, 13, 16, 17syl311anc 1381 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))
1915eleq2i 2817 . . . . . . . 8 (π‘Š ∈ 𝐹 ↔ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
20 uz3m2nn 12905 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
2120nnne0d 12292 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) β‰  0)
222, 7clwwlknonel 29961 . . . . . . . . . 10 ((𝑁 βˆ’ 2) β‰  0 β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
2321, 22syl 17 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
24233ad2ant3 1132 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
2519, 24bitrid 282 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ 𝐹 ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
26 3simpa 1145 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
2726adantr 479 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
28 simp32 1207 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
2928, 3anim12i 611 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉))
30 simpl33 1253 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
3127, 29, 303jca 1125 . . . . . . . . . . . 12 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
32313exp1 1349 . . . . . . . . . . 11 (π‘Š ∈ Word 𝑉 β†’ ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3))))))
33323ad2ant1 1130 . . . . . . . . . 10 ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) β†’ ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3))))))
3433imp 405 . . . . . . . . 9 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
35343adant3 1129 . . . . . . . 8 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3635com12 32 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3725, 36sylbid 239 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ 𝐹 β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3837imp32 417 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
39 numclwwlk1lem2foalem 30217 . . . . 5 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
4038, 39syl 17 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
41 eleq1a 2820 . . . . . 6 (π‘Š ∈ 𝐹 β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹))
4214, 41syl 17 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹))
43 eleq1a 2820 . . . . . 6 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋)))
4443ad2antll 727 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋)))
45 idd 24 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋 β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
4642, 44, 453anim123d 1439 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ (((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋)))
4740, 46mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
48 extwwlkfab.c . . . . 5 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
492, 48, 15extwwlkfabel 30219 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁) ↔ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))))
5049adantr 479 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁) ↔ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))))
5118, 47, 50mpbir2and 711 . 2 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁))
5251ex 411 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  {crab 3419  {cpr 4631  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  0cc0 11138  1c1 11139   + caddc 11141   βˆ’ cmin 11474  2c2 12297  3c3 12298  β„€β‰₯cuz 12852  ..^cfzo 13659  β™―chash 14321  Word cword 14496  lastSclsw 14544   ++ cconcat 14552  βŸ¨β€œcs1 14577   prefix cpfx 14652  Vtxcvtx 28865  Edgcedg 28916  USGraphcusgr 29018   NeighbVtx cnbgr 29201   ClWWalksN cclwwlkn 29890  ClWWalksNOncclwwlknon 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-edg 28917  df-upgr 28951  df-umgr 28952  df-usgr 29020  df-nbgr 29202  df-wwlks 29697  df-wwlksn 29698  df-clwwlk 29848  df-clwwlkn 29891  df-clwwlknon 29954
This theorem is referenced by:  numclwwlk1lem2fo  30224
  Copyright terms: Public domain W3C validator