MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foa Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foa 30383
Description: Going forth and back from the end of a (closed) walk: 𝑊 represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and 𝑌 = p(n-1), ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1lem2foa ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑤,𝑌
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)   𝑌(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2foa
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑋𝑉)
2 extwwlkfab.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbgrisvtx 29373 . . . . 5 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → 𝑌𝑉)
43ad2antll 729 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑌𝑉)
5 simpl3 1192 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑁 ∈ (ℤ‘3))
6 nbgrsym 29395 . . . . . . . 8 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
7 eqid 2735 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
87nbusgreledg 29385 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ (Edg‘𝐺)))
98biimpd 229 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
106, 9biimtrid 242 . . . . . . 7 (𝐺 ∈ USGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1110adantld 490 . . . . . 6 (𝐺 ∈ USGraph → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
12113ad2ant1 1132 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1312imp 406 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → {𝑋, 𝑌} ∈ (Edg‘𝐺))
14 simprl 771 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊𝐹)
15 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
1614, 15eleqtrdi 2849 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
172, 7clwwlknonex2 30138 . . . 4 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ (Edg‘𝐺) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
181, 4, 5, 13, 16, 17syl311anc 1383 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
1915eleq2i 2831 . . . . . . . 8 (𝑊𝐹𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
20 uz3m2nn 12931 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2120nnne0d 12314 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
222, 7clwwlknonel 30124 . . . . . . . . . 10 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2321, 22syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
24233ad2ant3 1134 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2519, 24bitrid 283 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
26 3simpa 1147 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
2726adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
28 simp32 1209 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
2928, 3anim12i 613 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑋𝑉𝑌𝑉))
30 simpl33 1255 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑁 ∈ (ℤ‘3))
3127, 29, 303jca 1127 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
32313exp1 1351 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
33323ad2ant1 1132 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
3433imp 406 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
35343adant3 1131 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3635com12 32 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3725, 36sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3837imp32 418 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
39 numclwwlk1lem2foalem 30380 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4038, 39syl 17 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
41 eleq1a 2834 . . . . . 6 (𝑊𝐹 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
4214, 41syl 17 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
43 eleq1a 2834 . . . . . 6 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
4443ad2antll 729 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
45 idd 24 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4642, 44, 453anim123d 1442 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)))
4740, 46mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
48 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
492, 48, 15extwwlkfabel 30382 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5049adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5118, 47, 50mpbir2and 713 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁))
5251ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  {cpr 4633  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  2c2 12319  3c3 12320  cuz 12876  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630   prefix cpfx 14705  Vtxcvtx 29028  Edgcedg 29079  USGraphcusgr 29181   NeighbVtx cnbgr 29364   ClWWalksN cclwwlkn 30053  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-wwlks 29860  df-wwlksn 29861  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by:  numclwwlk1lem2fo  30387
  Copyright terms: Public domain W3C validator