MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foa Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foa 29596
Description: Going forth and back from the end of a (closed) walk: π‘Š represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and π‘Œ = p(n-1), ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
Assertion
Ref Expression
numclwwlk1lem2foa ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑀,π‘Š   𝑀,π‘Œ
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)   π‘Š(𝑣,𝑛)   π‘Œ(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2foa
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ 𝑋 ∈ 𝑉)
2 extwwlkfab.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
32nbgrisvtx 28587 . . . . 5 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ π‘Œ ∈ 𝑉)
43ad2antll 727 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Œ ∈ 𝑉)
5 simpl3 1193 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
6 nbgrsym 28609 . . . . . . . 8 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx π‘Œ))
7 eqid 2732 . . . . . . . . . 10 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
87nbusgreledg 28599 . . . . . . . . 9 (𝐺 ∈ USGraph β†’ (𝑋 ∈ (𝐺 NeighbVtx π‘Œ) ↔ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
98biimpd 228 . . . . . . . 8 (𝐺 ∈ USGraph β†’ (𝑋 ∈ (𝐺 NeighbVtx π‘Œ) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
106, 9biimtrid 241 . . . . . . 7 (𝐺 ∈ USGraph β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
1110adantld 491 . . . . . 6 (𝐺 ∈ USGraph β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
12113ad2ant1 1133 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ)))
1312imp 407 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ))
14 simprl 769 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Š ∈ 𝐹)
15 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
1614, 15eleqtrdi 2843 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
172, 7clwwlknonex2 29351 . . . 4 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ (Edgβ€˜πΊ) ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))
181, 4, 5, 13, 16, 17syl311anc 1384 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))
1915eleq2i 2825 . . . . . . . 8 (π‘Š ∈ 𝐹 ↔ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
20 uz3m2nn 12871 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
2120nnne0d 12258 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) β‰  0)
222, 7clwwlknonel 29337 . . . . . . . . . 10 ((𝑁 βˆ’ 2) β‰  0 β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
2321, 22syl 17 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
24233ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
2519, 24bitrid 282 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ 𝐹 ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
26 3simpa 1148 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
2726adantr 481 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ (π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
28 simp32 1210 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
2928, 3anim12i 613 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉))
30 simpl33 1256 . . . . . . . . . . . . 13 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
3127, 29, 303jca 1128 . . . . . . . . . . . 12 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
32313exp1 1352 . . . . . . . . . . 11 (π‘Š ∈ Word 𝑉 β†’ ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3))))))
33323ad2ant1 1133 . . . . . . . . . 10 ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) β†’ ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3))))))
3433imp 407 . . . . . . . . 9 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
35343adant3 1132 . . . . . . . 8 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3635com12 32 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3725, 36sylbid 239 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ 𝐹 β†’ (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))))
3837imp32 419 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))
39 numclwwlk1lem2foalem 29593 . . . . 5 (((π‘Š ∈ Word 𝑉 ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
4038, 39syl 17 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
41 eleq1a 2828 . . . . . 6 (π‘Š ∈ 𝐹 β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹))
4214, 41syl 17 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹))
43 eleq1a 2828 . . . . . 6 (π‘Œ ∈ (𝐺 NeighbVtx 𝑋) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋)))
4443ad2antll 727 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋)))
45 idd 24 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋 β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
4642, 44, 453anim123d 1443 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ (((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) = π‘Š ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) = π‘Œ ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋)))
4740, 46mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))
48 extwwlkfab.c . . . . 5 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
492, 48, 15extwwlkfabel 29595 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁) ↔ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))))
5049adantr 481 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁) ↔ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) prefix (𝑁 βˆ’ 2)) ∈ 𝐹 ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑁 βˆ’ 2)) = 𝑋))))
5118, 47, 50mpbir2and 711 . 2 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ (π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁))
5251ex 413 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Š ∈ 𝐹 ∧ π‘Œ ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑋𝐢𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  {cpr 4629  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  2c2 12263  3c3 12264  β„€β‰₯cuz 12818  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541   prefix cpfx 14616  Vtxcvtx 28245  Edgcedg 28296  USGraphcusgr 28398   NeighbVtx cnbgr 28578   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-upgr 28331  df-umgr 28332  df-usgr 28400  df-nbgr 28579  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  numclwwlk1lem2fo  29600
  Copyright terms: Public domain W3C validator