Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑋 ∈ 𝑉) |
2 | | extwwlkfab.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
3 | 2 | nbgrisvtx 27708 |
. . . . 5
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → 𝑌 ∈ 𝑉) |
4 | 3 | ad2antll 726 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑌 ∈ 𝑉) |
5 | | simpl3 1192 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑁 ∈
(ℤ≥‘3)) |
6 | | nbgrsym 27730 |
. . . . . . . 8
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
8 | 7 | nbusgreledg 27720 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ (Edg‘𝐺))) |
9 | 8 | biimpd 228 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ (Edg‘𝐺))) |
10 | 6, 9 | syl5bi 241 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ (Edg‘𝐺))) |
11 | 10 | adantld 491 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → ((𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺))) |
12 | 11 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺))) |
13 | 12 | imp 407 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → {𝑋, 𝑌} ∈ (Edg‘𝐺)) |
14 | | simprl 768 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊 ∈ 𝐹) |
15 | | extwwlkfab.f |
. . . . 5
⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
16 | 14, 15 | eleqtrdi 2849 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
17 | 2, 7 | clwwlknonex2 28473 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ {𝑋, 𝑌} ∈ (Edg‘𝐺) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
18 | 1, 4, 5, 13, 16, 17 | syl311anc 1383 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
19 | 15 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐹 ↔ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
20 | | uz3m2nn 12631 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) |
21 | 20 | nnne0d 12023 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 2) ≠ 0) |
22 | 2, 7 | clwwlknonel 28459 |
. . . . . . . . . 10
⊢ ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋))) |
23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋))) |
24 | 23 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋))) |
25 | 19, 24 | syl5bb 283 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑊 ∈ 𝐹 ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋))) |
26 | | 3simpa 1147 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2))) |
27 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2))) |
28 | | simp32 1209 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝑋 ∈ 𝑉) |
29 | 28, 3 | anim12i 613 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) |
30 | | simpl33 1255 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑁 ∈
(ℤ≥‘3)) |
31 | 27, 29, 30 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))) |
32 | 31 | 3exp1 1351 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3)))))) |
33 | 32 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3)))))) |
34 | 33 | imp 407 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))))) |
35 | 34 | 3adant3 1131 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))))) |
36 | 35 | com12 32 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (((𝑊 ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))))) |
37 | 25, 36 | sylbid 239 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑊 ∈ 𝐹 → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))))) |
38 | 37 | imp32 419 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈
(ℤ≥‘3))) |
39 | | numclwwlk1lem2foalem 28715 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((((𝑊 ++
〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)) |
40 | 38, 39 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)) |
41 | | eleq1a 2834 |
. . . . . 6
⊢ (𝑊 ∈ 𝐹 → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹)) |
42 | 14, 41 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹)) |
43 | | eleq1a 2834 |
. . . . . 6
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))) |
44 | 43 | ad2antll 726 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))) |
45 | | idd 24 |
. . . . 5
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋 → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)) |
46 | 42, 44, 45 | 3anim123d 1442 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋))) |
47 | 40, 46 | mpd 15 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)) |
48 | | extwwlkfab.c |
. . . . 5
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
49 | 2, 48, 15 | extwwlkfabel 28717 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (((𝑊 ++
〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)))) |
50 | 49 | adantr 481 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 − 2)) = 𝑋)))) |
51 | 18, 47, 50 | mpbir2and 710 |
. 2
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ (𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋𝐶𝑁)) |
52 | 51 | ex 413 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑊 ∈ 𝐹 ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋𝐶𝑁))) |