MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foa Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foa 30374
Description: Going forth and back from the end of a (closed) walk: 𝑊 represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and 𝑌 = p(n-1), ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1lem2foa ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑤,𝑌
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)   𝑌(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2foa
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑋𝑉)
2 extwwlkfab.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbgrisvtx 29359 . . . . 5 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → 𝑌𝑉)
43ad2antll 729 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑌𝑉)
5 simpl3 1193 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑁 ∈ (ℤ‘3))
6 nbgrsym 29381 . . . . . . . 8 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
7 eqid 2736 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
87nbusgreledg 29371 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ (Edg‘𝐺)))
98biimpd 229 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
106, 9biimtrid 242 . . . . . . 7 (𝐺 ∈ USGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1110adantld 490 . . . . . 6 (𝐺 ∈ USGraph → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
12113ad2ant1 1133 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1312imp 406 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → {𝑋, 𝑌} ∈ (Edg‘𝐺))
14 simprl 770 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊𝐹)
15 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
1614, 15eleqtrdi 2850 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
172, 7clwwlknonex2 30129 . . . 4 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ (Edg‘𝐺) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
181, 4, 5, 13, 16, 17syl311anc 1385 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
1915eleq2i 2832 . . . . . . . 8 (𝑊𝐹𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
20 uz3m2nn 12934 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2120nnne0d 12317 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
222, 7clwwlknonel 30115 . . . . . . . . . 10 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2321, 22syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
24233ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2519, 24bitrid 283 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
26 3simpa 1148 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
2726adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
28 simp32 1210 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
2928, 3anim12i 613 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑋𝑉𝑌𝑉))
30 simpl33 1256 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑁 ∈ (ℤ‘3))
3127, 29, 303jca 1128 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
32313exp1 1352 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
33323ad2ant1 1133 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
3433imp 406 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
35343adant3 1132 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3635com12 32 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3725, 36sylbid 240 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3837imp32 418 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
39 numclwwlk1lem2foalem 30371 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4038, 39syl 17 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
41 eleq1a 2835 . . . . . 6 (𝑊𝐹 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
4214, 41syl 17 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
43 eleq1a 2835 . . . . . 6 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
4443ad2antll 729 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
45 idd 24 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4642, 44, 453anim123d 1444 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)))
4740, 46mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
48 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
492, 48, 15extwwlkfabel 30373 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5049adantr 480 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5118, 47, 50mpbir2and 713 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁))
5251ex 412 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  {cpr 4627  cfv 6560  (class class class)co 7432  cmpo 7434  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  2c2 12322  3c3 12323  cuz 12879  ..^cfzo 13695  chash 14370  Word cword 14553  lastSclsw 14601   ++ cconcat 14609  ⟨“cs1 14634   prefix cpfx 14709  Vtxcvtx 29014  Edgcedg 29065  USGraphcusgr 29167   NeighbVtx cnbgr 29350   ClWWalksN cclwwlkn 30044  ClWWalksNOncclwwlknon 30107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-edg 29066  df-upgr 29100  df-umgr 29101  df-usgr 29169  df-nbgr 29351  df-wwlks 29851  df-wwlksn 29852  df-clwwlk 30002  df-clwwlkn 30045  df-clwwlknon 30108
This theorem is referenced by:  numclwwlk1lem2fo  30378
  Copyright terms: Public domain W3C validator