MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foa Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foa 28139
Description: Going forth and back from the end of a (closed) walk: 𝑊 represents the closed walk p0, ..., p(n-2), p0 = p(n-2). With 𝑋 = p(n-2) = p0 and 𝑌 = p(n-1), ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) represents the closed walk p0, ..., p(n-2), p(n-1), pn = p0 which is a double loop of length 𝑁 on vertex 𝑋. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 5-Mar-2022.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
Assertion
Ref Expression
numclwwlk1lem2foa ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑤,𝑌
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)   𝑌(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2foa
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑋𝑉)
2 extwwlkfab.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbgrisvtx 27131 . . . . 5 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → 𝑌𝑉)
43ad2antll 728 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑌𝑉)
5 simpl3 1190 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑁 ∈ (ℤ‘3))
6 nbgrsym 27153 . . . . . . . 8 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
7 eqid 2798 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
87nbusgreledg 27143 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ (Edg‘𝐺)))
98biimpd 232 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
106, 9syl5bi 245 . . . . . . 7 (𝐺 ∈ USGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1110adantld 494 . . . . . 6 (𝐺 ∈ USGraph → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
12113ad2ant1 1130 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ (Edg‘𝐺)))
1312imp 410 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → {𝑋, 𝑌} ∈ (Edg‘𝐺))
14 simprl 770 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊𝐹)
15 extwwlkfab.f . . . . 5 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
1614, 15eleqtrdi 2900 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
172, 7clwwlknonex2 27894 . . . 4 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ (Edg‘𝐺) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
181, 4, 5, 13, 16, 17syl311anc 1381 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
1915eleq2i 2881 . . . . . . . 8 (𝑊𝐹𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
20 uz3m2nn 12279 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2120nnne0d 11675 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
222, 7clwwlknonel 27880 . . . . . . . . . 10 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2321, 22syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
24233ad2ant3 1132 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
2519, 24syl5bb 286 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
26 3simpa 1145 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
2726adantr 484 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)))
28 simp32 1207 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
2928, 3anim12i 615 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → (𝑋𝑉𝑌𝑉))
30 simpl33 1253 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑁 ∈ (ℤ‘3))
3127, 29, 303jca 1125 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
32313exp1 1349 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
33323ad2ant1 1130 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3))))))
3433imp 410 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
35343adant3 1129 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3635com12 32 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3725, 36sylbid 243 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑊𝐹 → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))))
3837imp32 422 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)))
39 numclwwlk1lem2foalem 28136 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4038, 39syl 17 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
41 eleq1a 2885 . . . . . 6 (𝑊𝐹 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
4214, 41syl 17 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹))
43 eleq1a 2885 . . . . . 6 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
4443ad2antll 728 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)))
45 idd 24 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋 → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
4642, 44, 453anim123d 1440 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)))
4740, 46mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
48 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
492, 48, 15extwwlkfabel 28138 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5049adantr 484 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) ∈ 𝐹 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))))
5118, 47, 50mpbir2and 712 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁))
5251ex 416 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊𝐹𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋𝐶𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  {cpr 4527  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  2c2 11680  3c3 11681  cuz 12231  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   ++ cconcat 13913  ⟨“cs1 13940   prefix cpfx 14023  Vtxcvtx 26789  Edgcedg 26840  USGraphcusgr 26942   NeighbVtx cnbgr 27122   ClWWalksN cclwwlkn 27809  ClWWalksNOncclwwlknon 27872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-edg 26841  df-upgr 26875  df-umgr 26876  df-usgr 26944  df-nbgr 27123  df-wwlks 27616  df-wwlksn 27617  df-clwwlk 27767  df-clwwlkn 27810  df-clwwlknon 27873
This theorem is referenced by:  numclwwlk1lem2fo  28143
  Copyright terms: Public domain W3C validator