| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . . 7
⊢ (𝑥 ∈
Cℋ → 𝑥 ∈ Cℋ
) |
| 2 | | simpl 482 |
. . . . . . 7
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → 𝑢 ∈ ℋ) |
| 3 | | pjhcl 31382 |
. . . . . . 7
⊢ ((𝑥 ∈
Cℋ ∧ 𝑢 ∈ ℋ) →
((projℎ‘𝑥)‘𝑢) ∈ ℋ) |
| 4 | 1, 2, 3 | syl2anr 597 |
. . . . . 6
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ ((projℎ‘𝑥)‘𝑢) ∈ ℋ) |
| 5 | | normcl 31106 |
. . . . . 6
⊢
(((projℎ‘𝑥)‘𝑢) ∈ ℋ →
(normℎ‘((projℎ‘𝑥)‘𝑢)) ∈ ℝ) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ (normℎ‘((projℎ‘𝑥)‘𝑢)) ∈ ℝ) |
| 7 | 6 | resqcld 14143 |
. . . 4
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ∈ ℝ) |
| 8 | 6 | sqge0d 14155 |
. . . 4
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ 0 ≤
((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
| 9 | | normge0 31107 |
. . . . . 6
⊢
(((projℎ‘𝑥)‘𝑢) ∈ ℋ → 0 ≤
(normℎ‘((projℎ‘𝑥)‘𝑢))) |
| 10 | 4, 9 | syl 17 |
. . . . 5
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ 0 ≤
(normℎ‘((projℎ‘𝑥)‘𝑢))) |
| 11 | | pjnorm 31705 |
. . . . . . 7
⊢ ((𝑥 ∈
Cℋ ∧ 𝑢 ∈ ℋ) →
(normℎ‘((projℎ‘𝑥)‘𝑢)) ≤ (normℎ‘𝑢)) |
| 12 | 1, 2, 11 | syl2anr 597 |
. . . . . 6
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ (normℎ‘((projℎ‘𝑥)‘𝑢)) ≤ (normℎ‘𝑢)) |
| 13 | | simplr 768 |
. . . . . 6
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ (normℎ‘𝑢) = 1) |
| 14 | 12, 13 | breqtrd 5145 |
. . . . 5
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ (normℎ‘((projℎ‘𝑥)‘𝑢)) ≤ 1) |
| 15 | | 2nn0 12518 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 16 | | exple1 14195 |
. . . . . 6
⊢
((((normℎ‘((projℎ‘𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤
(normℎ‘((projℎ‘𝑥)‘𝑢)) ∧
(normℎ‘((projℎ‘𝑥)‘𝑢)) ≤ 1) ∧ 2 ∈
ℕ0) →
((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ≤ 1) |
| 17 | 15, 16 | mpan2 691 |
. . . . 5
⊢
(((normℎ‘((projℎ‘𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤
(normℎ‘((projℎ‘𝑥)‘𝑢)) ∧
(normℎ‘((projℎ‘𝑥)‘𝑢)) ≤ 1) →
((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ≤ 1) |
| 18 | 6, 10, 14, 17 | syl3anc 1373 |
. . . 4
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ≤ 1) |
| 19 | | elicc01 13483 |
. . . 4
⊢
(((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ∈ (0[,]1) ↔
(((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ∈ ℝ ∧ 0 ≤
((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ∧
((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ≤ 1)) |
| 20 | 7, 8, 18, 19 | syl3anbrc 1344 |
. . 3
⊢ (((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ )
→ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2) ∈ (0[,]1)) |
| 21 | | strlem3a.1 |
. . 3
⊢ 𝑆 = (𝑥 ∈ Cℋ
↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) |
| 22 | 20, 21 | fmptd 7104 |
. 2
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → 𝑆: Cℋ
⟶(0[,]1)) |
| 23 | | helch 31224 |
. . . 4
⊢ ℋ
∈ Cℋ |
| 24 | 21 | strlem2 32232 |
. . . 4
⊢ ( ℋ
∈ Cℋ → (𝑆‘ ℋ) =
((normℎ‘((projℎ‘
ℋ)‘𝑢))↑2)) |
| 25 | 23, 24 | ax-mp 5 |
. . 3
⊢ (𝑆‘ ℋ) =
((normℎ‘((projℎ‘
ℋ)‘𝑢))↑2) |
| 26 | | pjch1 31651 |
. . . . . 6
⊢ (𝑢 ∈ ℋ →
((projℎ‘ ℋ)‘𝑢) = 𝑢) |
| 27 | 26 | fveq2d 6880 |
. . . . 5
⊢ (𝑢 ∈ ℋ →
(normℎ‘((projℎ‘
ℋ)‘𝑢)) =
(normℎ‘𝑢)) |
| 28 | 27 | oveq1d 7420 |
. . . 4
⊢ (𝑢 ∈ ℋ →
((normℎ‘((projℎ‘
ℋ)‘𝑢))↑2)
= ((normℎ‘𝑢)↑2)) |
| 29 | | oveq1 7412 |
. . . . 5
⊢
((normℎ‘𝑢) = 1 →
((normℎ‘𝑢)↑2) = (1↑2)) |
| 30 | | sq1 14213 |
. . . . 5
⊢
(1↑2) = 1 |
| 31 | 29, 30 | eqtrdi 2786 |
. . . 4
⊢
((normℎ‘𝑢) = 1 →
((normℎ‘𝑢)↑2) = 1) |
| 32 | 28, 31 | sylan9eq 2790 |
. . 3
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) →
((normℎ‘((projℎ‘
ℋ)‘𝑢))↑2)
= 1) |
| 33 | 25, 32 | eqtrid 2782 |
. 2
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → (𝑆‘ ℋ) = 1) |
| 34 | | pjcjt2 31673 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
→ (𝑧 ⊆
(⊥‘𝑤) →
((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢) = (((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢)))) |
| 35 | 34 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢) = (((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢))) |
| 36 | 35 | fveq2d 6880 |
. . . . . . . . . 10
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
(normℎ‘((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢)) =
(normℎ‘(((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢)))) |
| 37 | 36 | oveq1d 7420 |
. . . . . . . . 9
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
((normℎ‘((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢))↑2) =
((normℎ‘(((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢)))↑2)) |
| 38 | | pjopyth 31701 |
. . . . . . . . . 10
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
→ (𝑧 ⊆
(⊥‘𝑤) →
((normℎ‘(((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢)))↑2) =
(((normℎ‘((projℎ‘𝑧)‘𝑢))↑2) +
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2)))) |
| 39 | 38 | imp 406 |
. . . . . . . . 9
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
((normℎ‘(((projℎ‘𝑧)‘𝑢) +ℎ
((projℎ‘𝑤)‘𝑢)))↑2) =
(((normℎ‘((projℎ‘𝑧)‘𝑢))↑2) +
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2))) |
| 40 | 37, 39 | eqtrd 2770 |
. . . . . . . 8
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
((normℎ‘((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢))↑2) =
(((normℎ‘((projℎ‘𝑧)‘𝑢))↑2) +
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2))) |
| 41 | | chjcl 31338 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ )
→ (𝑧
∨ℋ 𝑤)
∈ Cℋ ) |
| 42 | 41 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
→ (𝑧
∨ℋ 𝑤)
∈ Cℋ ) |
| 43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
(𝑧 ∨ℋ
𝑤) ∈
Cℋ ) |
| 44 | 21 | strlem2 32232 |
. . . . . . . . 9
⊢ ((𝑧 ∨ℋ 𝑤) ∈
Cℋ → (𝑆‘(𝑧 ∨ℋ 𝑤)) =
((normℎ‘((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢))↑2)) |
| 45 | 43, 44 | syl 17 |
. . . . . . . 8
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
(𝑆‘(𝑧 ∨ℋ 𝑤)) =
((normℎ‘((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢))↑2)) |
| 46 | | 3simpa 1148 |
. . . . . . . . . 10
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
→ (𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
)) |
| 47 | 46 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
(𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
)) |
| 48 | 21 | strlem2 32232 |
. . . . . . . . . 10
⊢ (𝑧 ∈
Cℋ → (𝑆‘𝑧) =
((normℎ‘((projℎ‘𝑧)‘𝑢))↑2)) |
| 49 | 21 | strlem2 32232 |
. . . . . . . . . 10
⊢ (𝑤 ∈
Cℋ → (𝑆‘𝑤) =
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2)) |
| 50 | 48, 49 | oveqan12d 7424 |
. . . . . . . . 9
⊢ ((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ )
→ ((𝑆‘𝑧) + (𝑆‘𝑤)) =
(((normℎ‘((projℎ‘𝑧)‘𝑢))↑2) +
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2))) |
| 51 | 47, 50 | syl 17 |
. . . . . . . 8
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
((𝑆‘𝑧) + (𝑆‘𝑤)) =
(((normℎ‘((projℎ‘𝑧)‘𝑢))↑2) +
((normℎ‘((projℎ‘𝑤)‘𝑢))↑2))) |
| 52 | 40, 45, 51 | 3eqtr4d 2780 |
. . . . . . 7
⊢ (((𝑧 ∈
Cℋ ∧ 𝑤 ∈ Cℋ
∧ 𝑢 ∈ ℋ)
∧ 𝑧 ⊆
(⊥‘𝑤)) →
(𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤))) |
| 53 | 52 | 3exp1 1353 |
. . . . . 6
⊢ (𝑧 ∈
Cℋ → (𝑤 ∈ Cℋ
→ (𝑢 ∈ ℋ
→ (𝑧 ⊆
(⊥‘𝑤) →
(𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤)))))) |
| 54 | 53 | com3r 87 |
. . . . 5
⊢ (𝑢 ∈ ℋ → (𝑧 ∈
Cℋ → (𝑤 ∈ Cℋ
→ (𝑧 ⊆
(⊥‘𝑤) →
(𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤)))))) |
| 55 | 54 | adantr 480 |
. . . 4
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → (𝑧 ∈ Cℋ
→ (𝑤 ∈
Cℋ → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤)))))) |
| 56 | 55 | ralrimdv 3138 |
. . 3
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → (𝑧 ∈ Cℋ
→ ∀𝑤 ∈
Cℋ (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤))))) |
| 57 | 56 | ralrimiv 3131 |
. 2
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → ∀𝑧 ∈ Cℋ
∀𝑤 ∈
Cℋ (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤)))) |
| 58 | | isst 32194 |
. 2
⊢ (𝑆 ∈ States ↔ (𝑆:
Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑧 ∈
Cℋ ∀𝑤 ∈ Cℋ
(𝑧 ⊆
(⊥‘𝑤) →
(𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) + (𝑆‘𝑤))))) |
| 59 | 22, 33, 57, 58 | syl3anbrc 1344 |
1
⊢ ((𝑢 ∈ ℋ ∧
(normℎ‘𝑢) = 1) → 𝑆 ∈ States) |