HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem3a Structured version   Visualization version   GIF version

Theorem strlem3a 31257
Description: Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
strlem3a.1 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
Assertion
Ref Expression
strlem3a ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Distinct variable group:   𝑥,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑢)

Proof of Theorem strlem3a
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥C𝑥C )
2 simpl 483 . . . . . . 7 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑢 ∈ ℋ)
3 pjhcl 30406 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → ((proj𝑥)‘𝑢) ∈ ℋ)
41, 2, 3syl2anr 597 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((proj𝑥)‘𝑢) ∈ ℋ)
5 normcl 30130 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
64, 5syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
76resqcld 14040 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ)
86sqge0d 14052 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2))
9 normge0 30131 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
104, 9syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
11 pjnorm 30729 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
121, 2, 11syl2anr 597 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
13 simplr 767 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm𝑢) = 1)
1412, 13breqtrd 5136 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ 1)
15 2nn0 12439 . . . . . 6 2 ∈ ℕ0
16 exple1 14091 . . . . . 6 ((((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) ∧ 2 ∈ ℕ0) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
1715, 16mpan2 689 . . . . 5 (((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
186, 10, 14, 17syl3anc 1371 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
19 elicc01 13393 . . . 4 (((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1) ↔ (((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ ∧ 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2) ∧ ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1))
207, 8, 18, 19syl3anbrc 1343 . . 3 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1))
21 strlem3a.1 . . 3 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
2220, 21fmptd 7067 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆: C ⟶(0[,]1))
23 helch 30248 . . . 4 ℋ ∈ C
2421strlem2 31256 . . . 4 ( ℋ ∈ C → (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2))
2523, 24ax-mp 5 . . 3 (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2)
26 pjch1 30675 . . . . . 6 (𝑢 ∈ ℋ → ((proj‘ ℋ)‘𝑢) = 𝑢)
2726fveq2d 6851 . . . . 5 (𝑢 ∈ ℋ → (norm‘((proj‘ ℋ)‘𝑢)) = (norm𝑢))
2827oveq1d 7377 . . . 4 (𝑢 ∈ ℋ → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = ((norm𝑢)↑2))
29 oveq1 7369 . . . . 5 ((norm𝑢) = 1 → ((norm𝑢)↑2) = (1↑2))
30 sq1 14109 . . . . 5 (1↑2) = 1
3129, 30eqtrdi 2787 . . . 4 ((norm𝑢) = 1 → ((norm𝑢)↑2) = 1)
3228, 31sylan9eq 2791 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = 1)
3325, 32eqtrid 2783 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑆‘ ℋ) = 1)
34 pjcjt2 30697 . . . . . . . . . . . 12 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3534imp 407 . . . . . . . . . . 11 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
3635fveq2d 6851 . . . . . . . . . 10 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (norm‘((proj‘(𝑧 𝑤))‘𝑢)) = (norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3736oveq1d 7377 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2))
38 pjopyth 30725 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2))))
3938imp 407 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
4037, 39eqtrd 2771 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
41 chjcl 30362 . . . . . . . . . . 11 ((𝑧C𝑤C ) → (𝑧 𝑤) ∈ C )
42413adant3 1132 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 𝑤) ∈ C )
4342adantr 481 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧 𝑤) ∈ C )
4421strlem2 31256 . . . . . . . . 9 ((𝑧 𝑤) ∈ C → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
4543, 44syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
46 3simpa 1148 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧C𝑤C ))
4746adantr 481 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧C𝑤C ))
4821strlem2 31256 . . . . . . . . . 10 (𝑧C → (𝑆𝑧) = ((norm‘((proj𝑧)‘𝑢))↑2))
4921strlem2 31256 . . . . . . . . . 10 (𝑤C → (𝑆𝑤) = ((norm‘((proj𝑤)‘𝑢))↑2))
5048, 49oveqan12d 7381 . . . . . . . . 9 ((𝑧C𝑤C ) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5147, 50syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5240, 45, 513eqtr4d 2781 . . . . . . 7 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))
53523exp1 1352 . . . . . 6 (𝑧C → (𝑤C → (𝑢 ∈ ℋ → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5453com3r 87 . . . . 5 (𝑢 ∈ ℋ → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5554adantr 481 . . . 4 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5655ralrimdv 3145 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → ∀𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
5756ralrimiv 3138 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))
58 isst 31218 . 2 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
5922, 33, 57, 58syl3anbrc 1343 1 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wss 3913   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061   + caddc 11063  cle 11199  2c2 12217  0cn0 12422  [,]cicc 13277  cexp 13977  chba 29924   + cva 29925  normcno 29928   C cch 29934  cort 29935   chj 29938  projcpjh 29942  Statescst 29967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cc 10380  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140  ax-hilex 30004  ax-hfvadd 30005  ax-hvcom 30006  ax-hvass 30007  ax-hv0cl 30008  ax-hvaddid 30009  ax-hfvmul 30010  ax-hvmulid 30011  ax-hvmulass 30012  ax-hvdistr1 30013  ax-hvdistr2 30014  ax-hvmul0 30015  ax-hfi 30084  ax-his1 30087  ax-his2 30088  ax-his3 30089  ax-his4 30090  ax-hcompl 30207
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-acn 9887  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-cn 22615  df-cnp 22616  df-lm 22617  df-haus 22703  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cfil 24656  df-cau 24657  df-cmet 24658  df-grpo 29498  df-gid 29499  df-ginv 29500  df-gdiv 29501  df-ablo 29550  df-vc 29564  df-nv 29597  df-va 29600  df-ba 29601  df-sm 29602  df-0v 29603  df-vs 29604  df-nmcv 29605  df-ims 29606  df-dip 29706  df-ssp 29727  df-ph 29818  df-cbn 29868  df-hnorm 29973  df-hba 29974  df-hvsub 29976  df-hlim 29977  df-hcau 29978  df-sh 30212  df-ch 30226  df-oc 30257  df-ch0 30258  df-shs 30313  df-chj 30315  df-pjh 30400  df-st 31216
This theorem is referenced by:  strlem3  31258
  Copyright terms: Public domain W3C validator