HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem3a Structured version   Visualization version   GIF version

Theorem strlem3a 30515
Description: Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
strlem3a.1 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
Assertion
Ref Expression
strlem3a ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Distinct variable group:   𝑥,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑢)

Proof of Theorem strlem3a
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥C𝑥C )
2 simpl 482 . . . . . . 7 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑢 ∈ ℋ)
3 pjhcl 29664 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → ((proj𝑥)‘𝑢) ∈ ℋ)
41, 2, 3syl2anr 596 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((proj𝑥)‘𝑢) ∈ ℋ)
5 normcl 29388 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
64, 5syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
76resqcld 13893 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ)
86sqge0d 13894 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2))
9 normge0 29389 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
104, 9syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
11 pjnorm 29987 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
121, 2, 11syl2anr 596 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
13 simplr 765 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm𝑢) = 1)
1412, 13breqtrd 5096 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ 1)
15 2nn0 12180 . . . . . 6 2 ∈ ℕ0
16 exple1 13822 . . . . . 6 ((((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) ∧ 2 ∈ ℕ0) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
1715, 16mpan2 687 . . . . 5 (((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
186, 10, 14, 17syl3anc 1369 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
19 elicc01 13127 . . . 4 (((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1) ↔ (((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ ∧ 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2) ∧ ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1))
207, 8, 18, 19syl3anbrc 1341 . . 3 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1))
21 strlem3a.1 . . 3 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
2220, 21fmptd 6970 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆: C ⟶(0[,]1))
23 helch 29506 . . . 4 ℋ ∈ C
2421strlem2 30514 . . . 4 ( ℋ ∈ C → (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2))
2523, 24ax-mp 5 . . 3 (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2)
26 pjch1 29933 . . . . . 6 (𝑢 ∈ ℋ → ((proj‘ ℋ)‘𝑢) = 𝑢)
2726fveq2d 6760 . . . . 5 (𝑢 ∈ ℋ → (norm‘((proj‘ ℋ)‘𝑢)) = (norm𝑢))
2827oveq1d 7270 . . . 4 (𝑢 ∈ ℋ → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = ((norm𝑢)↑2))
29 oveq1 7262 . . . . 5 ((norm𝑢) = 1 → ((norm𝑢)↑2) = (1↑2))
30 sq1 13840 . . . . 5 (1↑2) = 1
3129, 30eqtrdi 2795 . . . 4 ((norm𝑢) = 1 → ((norm𝑢)↑2) = 1)
3228, 31sylan9eq 2799 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = 1)
3325, 32syl5eq 2791 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑆‘ ℋ) = 1)
34 pjcjt2 29955 . . . . . . . . . . . 12 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3534imp 406 . . . . . . . . . . 11 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
3635fveq2d 6760 . . . . . . . . . 10 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (norm‘((proj‘(𝑧 𝑤))‘𝑢)) = (norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3736oveq1d 7270 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2))
38 pjopyth 29983 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2))))
3938imp 406 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
4037, 39eqtrd 2778 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
41 chjcl 29620 . . . . . . . . . . 11 ((𝑧C𝑤C ) → (𝑧 𝑤) ∈ C )
42413adant3 1130 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 𝑤) ∈ C )
4342adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧 𝑤) ∈ C )
4421strlem2 30514 . . . . . . . . 9 ((𝑧 𝑤) ∈ C → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
4543, 44syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
46 3simpa 1146 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧C𝑤C ))
4746adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧C𝑤C ))
4821strlem2 30514 . . . . . . . . . 10 (𝑧C → (𝑆𝑧) = ((norm‘((proj𝑧)‘𝑢))↑2))
4921strlem2 30514 . . . . . . . . . 10 (𝑤C → (𝑆𝑤) = ((norm‘((proj𝑤)‘𝑢))↑2))
5048, 49oveqan12d 7274 . . . . . . . . 9 ((𝑧C𝑤C ) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5147, 50syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5240, 45, 513eqtr4d 2788 . . . . . . 7 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))
53523exp1 1350 . . . . . 6 (𝑧C → (𝑤C → (𝑢 ∈ ℋ → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5453com3r 87 . . . . 5 (𝑢 ∈ ℋ → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5554adantr 480 . . . 4 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5655ralrimdv 3111 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → ∀𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
5756ralrimiv 3106 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))
58 isst 30476 . 2 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
5922, 33, 57, 58syl3anbrc 1341 1 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  2c2 11958  0cn0 12163  [,]cicc 13011  cexp 13710  chba 29182   + cva 29183  normcno 29186   C cch 29192  cort 29193   chj 29196  projcpjh 29200  Statescst 29225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-chj 29573  df-pjh 29658  df-st 30474
This theorem is referenced by:  strlem3  30516
  Copyright terms: Public domain W3C validator